Crops for JULES

Tim Wheeler and Tom Osborne

Crops and Climate Group
• Why include crops?

• How are crops different?

• Simulating crops in land surface schemes
About 40% of the land surface is managed for crops and pasture
(Foley et al. 2005)

Source: SAGE
www.sage.wisc.edu/
Variability of growth and yield

Spatial variability due to climate, soils and management
Temporal variability due to technology, management and climate
How are crops different?

Actively managed for yield and profit
 – Crop variety, fertiliser, irrigation, pest and disease control, timing of growth and harvest

Selected and bred varieties
 – Partitioning to yield, efficiency of resource use, high rates of growth
Timing of growth and harvest

Natural grasslands not a good proxy for wheat in Oklahoma (McPherson et al. 2004)
Mechanization, irrigation, and fertilization increase cropland productivity above natural rates, while crop NPP in other regions is less than the natural NPP.
Where does crop NPP go?

Estimated fate of managed terrestrial ecosystem production.

Allocation (%) of crop NPP bound for international export - the remainder is for domestic consumption

(Foley et al, 2007)
maximum attainable yield

- yield of experimental/on-farm plots with no physical, biological, and economic constraints and with the best-known management practices at a given time and in a given ecology.

farm-level yield

- is the average farmers’ yield in a given target area at a given time and in a given ecology.

why is there this yield gap?

- **biophysical**: climate/weather, soils, water, pest pressure, weeds
- **management**: tillage, variety/seed selection, water, nutrients, weeds, pests, and post-harvest management
- **socio-economic**: socio-economic status, farmer’s traditions and knowledge, family size, household income/expenses/investment.
- **institutional/policy**: government policy, prices, credit, input supply, land tenure, market, research, development, extension.
- **technology transfer**: competence of extension/ advisory services, uptake of technology
Crops in JULES will allow for the assessment of crop impacts consistent with alterations to:

- water resources
- surface fluxes
- climate (when coupled to HadGEM)
Different complexity of crop model

FAO empirical
Simple process-based
Complex process-based

Requirements of a crop representation for JULES

Applicable over large areas
Evaluate against farmer’s field yields or research station?
Evaluate against fPAR
Consistent with approaches of JULES
Consistent with approaches of ED?
What’s been done already?

Wheat and maize in Europe
 ORCHIDEE-STICS by Gervios et al. 2004

Crops in US
 Agro-IBIS by Kucharik & Brye 2003

Many crops globally
 LPJ-mL model by Bondeau et al. 2007

Annual crops globally
 GLAM-MOSES by Osborne et al. 2007
Many crops globally
 LPJ-mL model by Bondeau et al. 2007

11 crop functional types
2 managed grassland types
Fertilisation data
Irrigation data
Sowing date
Optimum variety simulation
Crop models used: SWAT, EPIC, SWIM
For example ...

Annual crops globally GLAM-MOSES by Osborne et al. 2007

Changes in wheat coverage

Doubled CO$_2$ rainfed run
• Comparison of existing crop modelling approaches for simulation of crops in JULES

• Better evaluation with farm-level yields and resource use

• Improved representation of crop management
Thank you

Visit www.walker-institute.ac.uk

Email t.r.wheeler@rdg.ac.uk
t.m.osborne@rdg.ac.uk