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Current limitations in the modelling of hydrological processes in JULES
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● inherited the resolution of the atmospheric grid

↘ land heterogeneity and hydrological structures within the atmospheric grid 
accommodated for by using a large variety of sub-grid approaches

● inherited a column-based approach (i.e. vertical exchanges)

↘ absence of lateral flows between grid cells

● overlooked the two-way interaction between the land and the ocean

↘ absence of ocean feedbacks such as tides, storm surges, etc.

JULES was historically developed as a lower boundary condition to UM:



Hydro-JULES contributions to these limitations

3

The Hydro-JULES aims to tackle these limitations by providing:

● a new modelling framework for the terrestrial water cycle

↘ a modular representation of the water cycle

↘ interchangeable modules (referred to as components)

↘ possible two-way communication with other models (climate, ocean)

● a repository of components, including:

↘ a modular version of JULES

↘ new groundwater models

↘ CaMa-Flood



A modular representation of the terrestrial water cycle
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● subdivide the land system into components whose 
resolutions are adapted to the equations they aim to solve:

● spatial resolution can be adapted to the dominant 
structures of heterogeneity

● temporal resolution can be adapted to the timescale of 
the dominant processes

● for each component, all processes governing the energy, 
water and biogeochemical cycles are treated within a 
common numerical framework

● each scientific community (and their respective models and 
expertise) should map onto one or more components

Note, this is a draft version of the framework subdivisions. 
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Flexibility in the resolutions of the components
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● each component can 
feature its own spatial 
discretization

● a spatial “supermesh” is 
determined from the 
resolution of the 
components to preserve 
the continuity equations

● the grid cells/polygons 
can communicate with 
their neighbours (i.e. 
lateral flow, not only 
vertical) 
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A fixed interface of transfers between components
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Note, this is only a draft version of the interface. 

SurfaceLayer
Component

throughfall

snowmelt

transpiration

SubSurface
Component

OpenWater
Component

evaporation open water

runoff

water level?

soil water 
stress

water level?

● each component must comply with 
a fixed interface (i.e. information to 
produce, information to 
incorporate)

● the information to exchange (i.e. 
transfers) can be fluxes, ratios (e.g. 
soil water stress), and maybe states 
(water level)?

● the interface may feature a set of 
transform functions to convert 
component specific information to 
the set interface information?

With an initial focus on the water cycle
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Allowing for communication with external models

”Managed API”

● memory allocated and handled inside the Component 
(i.e. by the Component itself)

“Naked API”

● memory allocated and handled outside of the Component
(i.e. by the calling model)

The modelling framework will implement a “nested API” for each Component (i.e. a ”managed API” around a “naked API”)
(as per UK Met Office concept for JULES: https://code.metoffice.gov.uk/trac/jules/wiki/NestedAPIDiscussion)
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The underlying objective being to allow two manners of handling the memory
that Components require to sustain information between modelling time steps:

https://code.metoffice.gov.uk/trac/jules/wiki/NestedAPIDiscussion


A Python package as a first implementation of the framework blueprint

Core concepts of the Python implementation

● each Component is an object (of 3 different types: 
SurfaceLayer, SubSurface, OpenWater)

● a Model object is allowing the communication between each 
Component, it namely:

● features an Interface (responsible for the exchange of 
information and the remapping)

● features a Clock (responsible for the time-stepping)

● each Component must comply with the fixed Interface
(information in, information out)

● each Component must be implemented following the 
“initialise-run-finalise” paradigm
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Technical aspects of the Python implementation

● able to run simulation in parallel (using MPI protocol)

initialise

run

finalise
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Supporting Component’s initialise-run-finalise to be in Python-C-Fortran
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example 1
running the framework with all the components from JULES

example 2
combining JULES with a rainfall-runoff model and a hydraulic model

! Fortran! Fortran! Fortran # Python/* C */! Fortran

Rainfall-
Runoff 
Model

Hydraulic 
Model

Three languages are supported by the Python implementation:

● Python (trivial)

● Fortran using numpy.f2py to compile the Fortran code

● C using NumPy C-API and e.g. Cython to compile the C code 



Summary
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Hydro-JULES aim to provide:

● a new blueprint subdividing the terrestrial water cycle into components whose 
spatial and temporal scales are adapted to the equations of the dominant 
hydrological processes they are trying to solve

● a first implementation of this blueprint as a Python package (with possibility for 
Fortran and/or C extensions)

● the complete incorporation of JULES in the framework as distinct components

● a framework that can communicate in a two-way fashion with atmospheric and 
ocean models (while allowing flexibility on memory allocation ownership)

● a framework that supports and promotes the development and comparison of 
model components



github.com/hydro-jules

twitter.com/HydroJules


