
A new blueprint for next generation 
land-surface and hydrological predictions
Conceptual & Technical Overview of the Modelling Framework

Hallouin T., Ellis R., Lawrence B.N., Clark D., Blyth E., Polcher J., Hughes A., Lister G. and Dadson S.

11th September 2020
JULES Open Science Meeting
Online

github.com/ThibHlln twitter.com/ThibHllnthibault.hallouin@ncas.ac.uk



Current limitations in the modelling of hydrological processes in JULES

2

● inherited the resolution of the atmospheric grid

↘ land heterogeneity and hydrological structures within the atmospheric grid 
accommodated for by using a large variety of sub-grid approaches

● inherited a column-based approach (i.e. vertical exchanges)

↘ absence of lateral flows between grid cells

● overlooked the two-way interaction between the land and the ocean

↘ absence of ocean feedbacks such as tides, storm surges, etc.

JULES was historically developed as a lower boundary condition to UM:



Hydro-JULES contributions to these limitations

3

The Hydro-JULES aims to tackle these limitations by providing:

● a new modelling framework for the terrestrial water cycle

↘ a modular representation of the water cycle

↘ interchangeable modules (referred to as components)

↘ possible two-way communication with other models (climate, ocean)

● a repository of components, including:

↘ a modular version of JULES

↘ new groundwater models

↘ CaMa-Flood



A modular representation of the terrestrial water cycle

4

● subdivide the land system into components whose 
resolutions are adapted to the equations they aim to solve:

● spatial resolution can be adapted to the dominant 
structures of heterogeneity

● temporal resolution can be adapted to the timescale of 
the dominant processes

● for each component, all processes governing the energy, 
water and biogeochemical cycles are treated within a 
common numerical framework

● each scientific community (and their respective models and 
expertise) should map onto one or more components

Note, this is a draft version of the framework subdivisions. 

Surface Layer

Sub-Surface

Open
Water

Ponded water
Soil moisture
Groundwater

Canopy storage
Plant storage
Snowpack

Wetlands
Rivers
Lakes

Atmosphere

Ocean

Lower Boundary 
Conditions

(no water flux, 
constant heat flux)

Interface



Flexibility in the resolutions of the components

5

● each component can 
feature its own spatial 
discretization

● a spatial “supermesh” is 
determined from the 
resolution of the 
components to preserve 
the continuity equations

● the grid cells/polygons 
can communicate with 
their neighbours (i.e. 
lateral flow, not only 
vertical) 

Space

2-hourly

twice a day

daily

e.g.

Time

● each component can 
feature its own regular 
temporal resolution

Surface Layer

Sub-Surface

Open
Water



A fixed interface of transfers between components

6

evaporation 
soil surface

evaporation 
ponded water

Note, this is only a draft version of the interface. 

SurfaceLayer
Component

throughfall

snowmelt

transpiration

SubSurface
Component

OpenWater
Component

evaporation open water

runoff

water level?

soil water 
stress

water level?

● each component must comply with 
a fixed interface (i.e. information to 
produce, information to 
incorporate)

● the information to exchange (i.e. 
transfers) can be fluxes, ratios (e.g. 
soil water stress), and maybe states 
(water level)?

● the interface may feature a set of 
transform functions to convert 
component specific information to 
the set interface information?

With an initial focus on the water cycle



7

Allowing for communication with external models

”Managed API”

● memory allocated and handled inside the Component 
(i.e. by the Component itself)

“Naked API”

● memory allocated and handled outside of the Component
(i.e. by the calling model)

The modelling framework will implement a “nested API” for each Component (i.e. a ”managed API” around a “naked API”)
(as per UK Met Office concept for JULES: https://code.metoffice.gov.uk/trac/jules/wiki/NestedAPIDiscussion)

naked

managed
mem. alloc.

“science”

managed
mem. alloc.

“science”

managed
mem. alloc.

“science”

naked naked

UM/LFRic

The underlying objective being to allow two manners of handling the memory
that Components require to sustain information between modelling time steps:

https://code.metoffice.gov.uk/trac/jules/wiki/NestedAPIDiscussion


A Python package as a first implementation of the framework blueprint

Core concepts of the Python implementation

● each Component is an object (of 3 different types: 
SurfaceLayer, SubSurface, OpenWater)

● a Model object is allowing the communication between each 
Component, it namely:

● features an Interface (responsible for the exchange of 
information and the remapping)

● features a Clock (responsible for the time-stepping)

● each Component must comply with the fixed Interface
(information in, information out)

● each Component must be implemented following the 
“initialise-run-finalise” paradigm

= + +Model

Interface

Clock

Surface
Layer

Component

Sub-
Surface

Component

Open
Water

Component

Technical aspects of the Python implementation

● able to run simulation in parallel (using MPI protocol)

initialise

run

finalise

8



Supporting Component’s initialise-run-finalise to be in Python-C-Fortran

9

example 1
running the framework with all the components from JULES

example 2
combining JULES with a rainfall-runoff model and a hydraulic model

! Fortran! Fortran! Fortran # Python/* C */! Fortran

Rainfall-
Runoff 
Model

Hydraulic 
Model

Three languages are supported by the Python implementation:

● Python (trivial)

● Fortran using numpy.f2py to compile the Fortran code

● C using NumPy C-API and e.g. Cython to compile the C code 



Summary

10

Hydro-JULES aim to provide:

● a new blueprint subdividing the terrestrial water cycle into components whose 
spatial and temporal scales are adapted to the equations of the dominant 
hydrological processes they are trying to solve

● a first implementation of this blueprint as a Python package (with possibility for 
Fortran and/or C extensions)

● the complete incorporation of JULES in the framework as distinct components

● a framework that can communicate in a two-way fashion with atmospheric and 
ocean models (while allowing flexibility on memory allocation ownership)

● a framework that supports and promotes the development and comparison of 
model components



github.com/hydro-jules

twitter.com/HydroJules


