Clustering approaches for JULES
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Usually we run JULES on a gridded system.
Each grid cell has
* a column of soil with derived soil physics parameters (and
e.g. Carbon content.....)
« a/several land cover type(s) (PFTSs)
* met drivers (usually up or downscaled from a modelled
product)
* No communication between neighbouring cells

We can then route our surface and subsurface flows to give streamflows (usually
no further interaction with the land)

HRU or hillslope approach is different because
We cluster ‘SIMILAR’ grid cells together
These clusters may then exchange water between them
(communication)
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Some existing clustering approaches:

5194/gmd-12-228!

© Author(s) 2019. This work is distributed under

the Creative Commons Attribution 4.0 License.
D]

A ,. iy 100 s
jAMES Journal of Advances in
Modeling Earth Systems =
Representing Intrahillslope Lateral Subsurface Flow in
the Community Land Model

Sean C. Swenson' ), Martyn Clark*(, ving Fan*), David M. Lawrence*
and Justin Perket*

DECIPHeR v1: Dynamic fluxEs and Connectlvity
for Predictions of HydRology

Climate and Global Dy v et for Atmospherk
Iydro Canmore ¢ b, Un sakaichewan, Canmore, Al
arth and Planet 5 ¥ NJ, USA, “Goddard Space

Gemma Coxon'?, Jim Freer'?, Rosanna Lane', Toby Dunne', Wouter J. M. Knoben’, Nicholas J. K. Howden™, and Spoce Adminis

Niall Quinn*, Thorsten Wagener”~, and Ross Woods

!School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
2Cabot Institute, University of Bristol, Bristol, BS8 1UJ, UK

3Department of Civil Engmcmng_ University of Bristol, Bristol, BS8 1TR, UK
*Fathom Global, The Engine Shed, Station Approach, Bristol, BS1 6QH, UK

Bagher cxape
elatve 0 upls

Cormsprndence IYDROLOGICAL PROCESSES
e, it Procss. 3. 3543 3559 (016)
et o 19 At 01 Wy Ok iy
ey com) DO 10,1002
Correspondence: Gemma Coxon (gemma.coxon@bristol.ac.uk) an
Received: 16 August 2018 - Discussion started: 24 September 2018 n HydroBlocks: a field-scale resolving land surface model for
Revised: 18 April 2019 ~ Accepted: 30 April 2019 ~ Published: 14 June 2019

application over continental extents

Abstract. This paper presents DECIPHeR (Dynamic fluxEs 1 Introduction

and Connectlvity for Predictions of HydRology), a new

model framework that simulates and predicts hydrologic ~ Water resources require careful management to ensure ade-
flows from spatial scales of small headwater catchments to  quate potable and industrial supply. to support the economi
entire continents. DECIPHR can be adapted to specific hy-  and recreational value of water, and to minimize the impacts
drologic settings and to different levels of data availability. f hy s such as droughts and floods on the
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Here we take the HYDROBLOCKS approach
but apply only to the LAND parts of JULES | EEnEE

proach, —Jm per 0.25° cell) are required to approxima
named HydroBlocks, accomplishes this task while maintain.  distributed simulation adequately. and (3) the suri
ing computational efficier Hydrologic Re: balance partitioning is sensitive to the river routing model pn

(HRUS), more commonly known as “tiles” ' rameters. The resulting routing scheme provides an
droBlocks, these HRUS are learned via a hierarct and efficient path forward to enable a two-way coupling e
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Land response units (LRUs) in JULES/hydroJULES

HYDROBLOCKS
Partltllon domaininto N' HRUs JULES runs for N
with chosen. clustering N o
covariates
Meteorology
Soil properties HYDROBLOCKS
Map back into physical

Topmodel pars space

UNIFHY
streamflows

CHESS 1km resolution

OUTPUTS 50m resolution & 5 EEENel e V(=] gTa[sNelolo [SRS{=IEH
https://github.com/chaneyn/HydroBlocks

For unifhy see: https://github.com/unifhy-org
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nitial POC: Plynlimon, Wales
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Land Cover Broadleaf - Needleleaf NB SOII anCIIS a”

A the same!
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Some clustering results: DEM
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Some output results: snapshot soil moisture

Increasing
complexity, but
now we have
no ‘truth’
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Some output results: soil moisture
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Mix of results!
o= Remember: point probes
are not representative of
LRU average (or km grid
cell!)

probe_PLYNL_CY_30_at_depths
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https://doi.org/10.5285/450bb14b-c711-47af-8792-f9bd88482cd4

Hydrographs (daily m3/m3)
for 2017 show NRFA obs in
balck and model output in
red. Hardly any difference
for 10 or 63 LRU
configurations
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Next stop: the Thames! (to Reading)

Precip
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Conclusions and future

* Plynlimon river results promising — indicate 10
HRUs can be as good as 63 grid cells(?)

e Streamflow VERY sensitive to river routing
resolution

Hydrographs for 1976 — 1980 (inc)
« Thames results likely to be more interesting — Black NRFA obs, red JULES_10LRU

larger, more heterogenous etc

* Hope to answer:

e Is this a useful approach in JULES? Thames
e WHICH characteristics are most dem
100LRU

important for LRUs?
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Comparison with JULES GRIDDED
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... is a bit tricky......
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Some clustering results: snapshot precip
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BUT WHAT about the precip for 10HRUS? ez o 10msi, o scec covares

lidslc

smcl
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