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Figure 1.2. Reconstructed global change in biomass burning between 24 ka and present compared to reconstructed environmental changes. 
The global trajectory of biomass burning (a) is smoothed using a half-window width of 500yr to emphasis the long terms trends. These 
changes are compared to (b) observationally-constrained reconstructed global mean surface temperature from Osman et al. (2021). 

Table 1.2. Summary of Global and regional burnt area anomaly values for each model. Mean BA values are colour coded with reds 
representing negative mean anomalies, and greens representing positive mean anomalies.  

Region Mean BA (%) Standard deviation (%) Model 

Globe 
 

-1.23 9.26 SPITFIRE 
-3.92 7.99 SIMFIRE 
-2.05 8.26 ORCHIDEE 
3.63 10.74 LPJLM 

Northern_Extratropics 
 

-0.29 1.42 SPITFIRE 
-1.44 2.57 SIMFIRE 
-0.16 0.74 ORCHIDEE 
1.51 7.76 LPJLM 

Southern_Extratropics 
 

-1.07 2.15 SPITFIRE 
-1.76 2.07 SIMFIRE 
-3.18 7.22 ORCHIDEE 
12.81 16.45 LPJLM 

Tropics 
 

-2.25 13.47 SPITFIRE 
-6.79 10.75 SIMFIRE 
-4.82 12.65 ORCHIDEE 
5.20 12.20 LPJLM 

 

 

Figure 
1.1. 
Model 

comparisons of LGM fire anomalies for all models. Boxplots illustrate the Global mean anomalies for the four models and the RPD z scores. 
Blue shading represents negative mean anomalies and red represents positive mean anomalies.   

     



Predictors BURNT AREA FIRE SIZE FIRE INTENSITY
Maximum monthly number of dry days 70.23 11.16 -14.27

Seasonality of monthly number of dry days 59.26 -16.18
Maximum mean monthly vapour pressure deficit (Pa) 39.11 5.12 -47.55

Maximum mean monthly diurnal temperature range (K) 19.82 14.46

Mean wind speed of the hottest month (m s–1) -6.8 14.41
Gross primary production (g C m−2 a−1) 63 -18.47

Seasonality of  gross primary production 14.78 5.18
Fractional tree cover -18.74 -5.25 9.08

Fractional shrubland cover 26.35 7.61
Fractional grassland cover 52.91 -11.91

Vector Ruggedness Measure -21.39 -5.78
Topographic Position Index 18.86

Road density (km–2) -37.32 -16.47 8.58
Fractional cropland cover -10.05 -22.42
Population density (km–2) 10.64 -13.49

Mean monthly lightning ground-strikes  (km–2) 12.35 5.5 -7.15
R 2 (McFadden, 1974) O.69 0.29 0.27
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Figure 1. Partial residual plots for BA, FS and FI as functions of (GPP) gross primary production, (GPP (s)) seasonality of GPP,
(shrub) shrubland cover, (grass) grassland cover, (tree) tree cover, (roads) road density, (crop) cropland, (VRM) vector
ruggedness measure, (TPI) topographic position index, (DD) dry days, (DD (s)) dry days seasonality, (VPD) vapour pressure
deficit, (DTR) diurnal temperature range, (wind) wind speed, (popd) population density and (light) lightning ground-strikes.
Green represents vegetation and land cover predictors; purple represents fragmentation predictors; red represents climate
predictors; blue represents ignition source predictors.

Figure 2. T-values for each predictor included in the final BA (A), FS (B) and FI models (C) showing relative importance of each
predictor. The larger the absolute t-values of a predictor within a model, the more variance that individual predictor explains in
that model. Green represents vegetation and land cover predictors; purple represents fragmentation predictors; red represents
climate predictors; blue represents ignition source predictors.
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Figure 3. Observed (left) and predicted (right) annual BA (fraction), monthly median FS (km2) and monthly median FI
(W km−1).

(Pausas and Ribeiro 2013). In addition, both light-
ning and population density positively influence BA.
The apparent fire-suppressing effect of population
density (noted by Bistinas et al 2014, Knorr et al
2014, among others) is represented in our analysis by
road density. Roads provide barriers to fire spread,
hence the negative relationship of BA to road density.
When this effect is accounted for, population density
relates positively to BA. The positive relationship with
TPI suggests that fractional BA increases as we move
from valleys to ridges, and that ridges do not con-
strain BA. This result is in line with previous research
suggesting that ridges do not necessary provide fire
breaks, and that valleys, characterized by higher soil
moisture, lower insolation, and higher terrain shad-
ing exhibit stronger control on fire spread (Povak
et al 2018). Terrain heterogeneity (VRM) however,
strongly constrains BA. Although wind speed pro-
motes fire spread, wind speed was negatively related
to BA, in line with previous research showing the lim-
ited effect of wind speeds on BA at a coarse global
scale (Lasslop et al 2015).

Factors promoting fire spread, namelywind speed
and dryness (particularly DTR, but also VPD) were
shown to be the primary drivers of FS while cropland
cover, road density, and terrain heterogeneity (VRM),
all agents of landscape fragmentation, strongly con-
strain FS. The effect of wind speed was significant
for FS. TPI was not statistically significant, suggest-
ing that the presence of steep slopes and ridges do not
necessarily control fire spread (Povak et al 2018). This

is consistent with research suggesting fuel continu-
ity is important for FS (Viedma et al 2009, Hantson
et al 2015, Laurent et al 2019). In contrast with BA, FS
showed no significant relationship to GPP or grass-
land cover—indicating fuel availability is less import-
ant for FS than BA, and that large fires tend not to
occur in highly productive environments.

The FI metric was shown to be positively influ-
enced by tree cover and road density and constrained
by dryness (particularly VPD, and also DD). Lack of
precipitation has been shown to limit fuel build-up
(Keeley and Syphard 2017, Kuhn-Régnier et al 2021,
Pausas and Keeley 2021) and high atmospheric dry-
ness (VPD) limits plant growth (Fu et al 2022). The
negative relationship with dryness is therefore not
surprising since we expect fuel load to be an import-
ant driver of FI. Although GPP is negatively related
to the FI measure, when VPD was excluded, the sea-
sonality of GPP became the strongest driver of the FI
model, an effect that did not translate into the other
two models. This would suggest that sufficient atmo-
spheric moisture along with seasonal changes in pro-
ductivity, provide the dense fuel loads necessary for
intense fires. These dense fuel loads aremostly restric-
ted to areas with high tree cover, explaining the neg-
ative relationship with grassland and shrubland cover
(Archibald et al 2013, Luo et al 2017, Archibald et al
2018). The overall negative relationship with GPP
could therefore be explained by intense fires mainly
occurring in regions with a seasonal variation in pro-
ductivity, more characteristic of the high latitude
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Figure 1. Partial residual plots for BA, FS and FI as functions of (GPP) gross primary production, (GPP (s)) seasonality of GPP,
(shrub) shrubland cover, (grass) grassland cover, (tree) tree cover, (roads) road density, (crop) cropland, (VRM) vector
ruggedness measure, (TPI) topographic position index, (DD) dry days, (DD (s)) dry days seasonality, (VPD) vapour pressure
deficit, (DTR) diurnal temperature range, (wind) wind speed, (popd) population density and (light) lightning ground-strikes.
Green represents vegetation and land cover predictors; purple represents fragmentation predictors; red represents climate
predictors; blue represents ignition source predictors.

Figure 2. T-values for each predictor included in the final BA (A), FS (B) and FI models (C) showing relative importance of each
predictor. The larger the absolute t-values of a predictor within a model, the more variance that individual predictor explains in
that model. Green represents vegetation and land cover predictors; purple represents fragmentation predictors; red represents
climate predictors; blue represents ignition source predictors.
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Figure 4. The relationship between vegetation fragmentation and burnt area in evergreen broadleaf forest, woody savanna and
open savanna in tropical South America. Observed burnt area and vegetation fragmentation is based on the Global Fire Atlas
(Andela et al 2019) and Hansen et al (2020) data sets at 1 km pixel resolution. Evergreen broadleaf forest (>60% evergreen woody
vegetation, >2 m height), woody savanna (30%–60% forest cover, >2 m height) and open savanna (<30% forest cover, grassland
and shrubland) is based on MODIS MCD12Q1 for 2012 (Friedl et al 2002) resampled at 1 km pixel spacing. The data for
evergreen broadleaf forests are only from north of the equator. The scales for burnt area differ between the three biome types.

Given that the empirical basis for all these formula-
tions is weak, there is a need for more rigorous testing
of howpotential ignitions relate to observed ignitions.
Furthermore, it would be useful in a model devel-
opment context to shift the focus away from poten-
tial ignition sources, to the physical and biological
factors that influence the fuel loads and flammabil-
ity of ecosystems and hence fire spread, and the way
that these factors may be modified by human inter-
ventions. Indeed, how vegetation properties determ-
ine fuel loads and fuel drying is known to be a weak-
ness of existing global models (Baudena et al 2015,
Forkel et al 2019, D’Onofrio et al 2020).

5. Implications for biodiversity and
ecosystemmanagement

It is now generally accepted that universal fire sup-
pression is neither possible nor desirable. Although
biodiversity can be negatively impacted by fire in non-
fire-adapted ecosystems, it is also expected to be neg-
atively impacted by fire suppression elsewhere because
the life histories of plants adapted to fire are intim-
ately bound up with their fire regime (Driscoll et al
2010). Moreover, as is now widely recognized, zero-
fire policies in some countries have increased the risks
of uncharacteristically intense wildfires (Calkin et al
2015, Moreira et al 2020, Santos et al 2021) with
potentially negative consequences for biodiversity, as
well as for human habitation.

Globally, wildfire frequency has declined steeply
since the late nineteenth century (Marlon et al 2008),
a trend they explained by increased landscape frag-
mentation due to the widespread adoption of intens-
ive agriculture. Other factors, such as the expansion

of commercial forestry, improved forest management
and deliberate fire suppression to preserve agricul-
tural and timber resources may also have contrib-
uted to this decline. The (partly unintentional) role
of human population in reducing fire frequency in
fire-adapted ecosystems means that almost no place
on Earth can now be said to have an entirely nat-
ural fire regime (Chuvieco et al 2021). Biodiversity
conservation in some regions may require trying to
mimic the natural fire regime through a combination
of approaches, including prescribed burning (Kelly
et al 2020).

Recent years have indeed seen a shift in wild-
fire management practices in regions where wild-
fires are important for maintaining natural resources
and biodiversity (Hunter et al 2011, Huffman et al
2020). Nevertheless, adapting wildfire management
to meet multiple objectives, including safeguarding
habitation and infrastructure while conserving biod-
iversity, in a rapidly warming climate is a challenge
for which we are still poorly equipped (Moritz et al
2014, Kelly et al 2020). The palaeorecord has shown
that wildfire frequency is highly sensitive to temper-
ature variations: even the relatively small-amplitude
variations in global mean temperature over the last
millennium are reflected in charcoal records all over
the world (Marlon et al 2008). Model simulations
of future fire risk under continued climate change
do not project increases everywhere, but they do so
consistently in some regions. However, the projec-
tions of climate change made using different climate
models also show considerable divergence from one
another and there are substantial regions where the
projected changes in fire risk diverge even in sign
(IPCC Land Report 2019). The evidence base for
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Figure 3. Changes in the relative abundance of resprouting woody plants as a function of fire return interval. The relative
abundance information for 29 192 sites across Europe (SI figure 2) was derived from the sPlotOpen data base (Sabatini et al
2021). Information about species that resprout or do not resprout after fire was derived from the BROT (Tavşanoğlu and Pausas
2018) and TRY (Kattge et al 2020) databases, an extensive literature search and the authors’ field knowledge (see SI table 3).
Species that could not be classified as resprouters or non-resprouters are excluded from the analysis. The fire return interval was
calculated using burnt area data from 2000 to 2020 fromMODIS MCD64CMQ (Giglio et al 2018). This product does not sense
small fires and thus underestimates total burnt area in individual grid cells. This and the short length of the record means that the
fire return times should be considered as relative rather than absolute estimates of actual fire return times. Individual site values
are shown as blue dots, the red dots show the mean, the black lines show the median, the boxes show the interquartile range of the
relative abundance. The significance of median differences under different fire return intervals was assessed using the
non-parametric Kruskall-Wallis test, where significantly different populations are indicated by different letters. The number of
observations in each category is indicated in brackets.

heat-responsive seed-bearing structures are held (He
et al 2012). While it is still debated whether these
flammability-related traits are adaptive (see e.g. Bond
and Midgley 1995, Bowman et al 2014, Prior et al
2017), it is clear that deciduous bark such as in
some Eucalyptus species increase the build-up of fuel
and therefore the probability of fire. Grasses show
a large range in flammability; more flammable spe-
cies are both adapted to and promote frequent burn-
ing (Simpson et al 2016, 2021, Cardoso et al 2018).
Variations in flammability are also seen at the com-
munity scale. Closed canopy forests, for example,
tend to resist the incursion and spread of fire from
neighbouring flammable ecosystems by maintain-
ing a shadier, more humid and relatively windless
understorey from which flammable grass species are
excluded and other accumulated fine fuels remain too
wet to support fire spread (Hoffmann et al 2011, Oliv-
eras et al 2016, Cardoso et al 2021). Grasslands in gen-
eral burn more frequently than forests, and their fre-
quent burning makes it hard for trees to dominate
even if climatic conditions are suitable and there are
nearby seed sources of tree species (Hoffmann et al
2012a, 2012b, Pausas and Bond 2020a). There is a

universal threshold around 40% forest cover, below
which fire frequency increases steeply (Archibald et al
2009, Staver et al 2011, van Nes et al 2018). The
fire regime, in turn, impacts nutrient availability: fre-
quent fires reduce plant and ecosystem nutrient con-
tents and thereby the potential for biomass accumu-
lation (Pellegrini et al 2021). Indeed, the emissions
from frequent fires may lead to the redistribution of
nutrients over a large area, thus increasing the spatial
scale of nutrient recycling (Pausas and Bond 2020b).

Plant adaptations to wildfire thus tend to rein-
force the fire regime with which they are associ-
ated through positive feedback mechanisms (‘veget-
ation switches’ sensuWilson and Agnew 1992). These
feedbacks can maintain persistent sharp boundar-
ies between vegetation patches, for example between
forest and grassland (Dantas et al 2013, Oliveras and
Malhi 2016, van Nes et al 2018). Positive feedbacks
can also cause sharp spatial vegetation transitions
along continuous environmental gradients (Grimm
1983, Grimm and Jacobson 1992) and, analogously,
abrupt temporal responses of vegetation to gradual
changes in climate (deMenocal et al 2000, Zhao et al
2017). Some mathematical models of such systems
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Olivia model
Est. S.E. z val. p VIF

(Intercept) 2.3 0.07 34.82 0

Fire return interval -0.11 0.01 -10.75 0 1.05

GPP 0.33 0.03 11.05 0 1.03

Herb cover -2.27 0.12 -18.28 0 1.02

MODEL FIT:
Pseudo-R² (Cragg-Uhler) = 0.05
Pseudo-R² (McFadden) = 0.04

Observations: 26426
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D. I. Kelley et al.: Parameterisation of fire in LPX1 vegetation model 2425

Figure 6. Comparison of the simulated abundance of grass, trees
and resprouting trees along the climatic gradient in moisture, as
measured by ↵ (actual potential evapotranspiration). Remotely
sensed observations (a) of tree and grass cover from DeFries and
Hansen (2009) compared to distribution of grass and trees simulated
(b) by LPX and (c) LPX-Mv1-rs. (d)Observations of the abundance
of aerial resprouters (RS – red) and other species (NR – black) from
Harrison et al. (2014) compared to (e) RS (red) and non-resprouting
(NR) PFTs (black) simulated by LPX-M-v1-rs. Note that some of
the species included in the observed NR category may exhibit post-
fire recovery behaviours such as underground (clonal) regrowth. ↵
was calculated as described by Gallego-Sala et al. (2010) in (a) and
(d), and simulated by the relevant model in (b), (c) and (e). Abun-
dance in (d) and (e) is normalised to show the percentage of the total
vegetative cover of each category. Solid lines denote the 0.1 running
mean and shading denotes the density of sites based on quantiles for
each 0.1 running interval of ↵.
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Figure 7. Comparison of the time taken for leaf area (as indexed by
total foliage projective cover, FPC), to recover after fire in differ-
ent ecosystems, as shown in the LPX-Mv1-rs simulations and from
observations listed in Table S3. For comparison with the observa-
tions, which were all made after a significant loss of above-ground
biomass through fire, the LPX simulations show recovery after a
loss of 60% of the leaf area. Red denotes ecosystems dominated
by above-ground RS species; blue denotes ecosystems dominated
by other fire-adapted species, mostly OS; black denotes vegetation
which does not display specific fire adaptations (NR). The solid
lines show LPX simulations; dotted lines show the mean of the rel-
evant observations; the shaded areas show interquartile ranges of
the relevant observations. The plots show that LPX-M-v1 repro-
duces the observed recovery rate in ecosystems dominated by re-
sprouting species; recovery in ecosystems lacking resprouting trees
is slower than observed, which could either reflect issues with sim-
ulated growth rates or the absence of other forms of fire adaptation.

simulations. We use benchmarking metrics to quantify the
differences between the simulations (Table 5, Table S5 in the
Supplement). Following (Kelley et al., 2013), we calculate
the metrics in three steps in order to take account of biases:
Step 1 is a straight comparison; 2 is a comparison with the
influence of the mean removed; and 3 is with mean and vari-
ance removed.
As the NME and MM metrics are the sum of the abso-

lute spatial variation between the model and observations,
the comparison of scores obtained by two different models
shows the relative magnitude of their biases with respect to
the observations, and the improvement can be expressed in
percentage terms. Although we focus on vegetation distribu-
tion and fire, we have also evaluated model performance in
terms of other vegetation characteristics, including fAPAR,
net primary production, and height (Table S5 in the Supple-
ment), to ensure that changes in the model do not degrade the
simulation of these characteristics.

5.1 LPX-Mv1-nr

The simulation of annual average burnt area for Australia in
LPX-Mv1-nr is more realistic than in LPX: the NME score is

www.geosci-model-dev.net/7/2411/2014/ Geosci. Model Dev., 7, 2411–2433, 2014



• SOTA fire models DON’T perform well
• empirical analyses provide insights on how to model fire 

better
• the controls on burnt area, fire size and fire intensity are 

different
• human impacts affect different components of fire 

regime
• vegetation properties are important for modelling fire
• impact of fragmentation differs with veg type
• vegetation traits vary with fire regimes
• modelling e.g. resprouting will have impact on recovery


