

LEVERHULME

Centre for Wildfires, Environment and Society Imperial College London

Empirical modelling of fire regimes and vegetation responses to fire Sandy P. Harrison, Olivia Haas, Yicheng Shen, I. Colin Prentice

www.centreforwildfires.org

Twitter @centrewildfires

LEVERHULME TRUST _____

WHY DO WE NEED EMPIRICAL MODELLING?

LEVERHULME Centre for Wildfires, Environment and Society

data from Hantson et al., 2020, GMD

WHY DO WE NEED EMPIRICAL MODELLING?

SPITFIRE	
SIMFIRE	
ORCHIDEE	
LPJLM	
SPITFIRE	
SIMFIRE	
ORCHIDEE	
LPJLM	
SPITFIRE	
SIMFIRE	
ORCHIDEE	
LPJLM	
SPITFIRE	
SIMFIRE	
ORCHIDEE	
LPJLM	

LEVERHULME

Centre for Wildfires, Environment and Society

Harrison et al., 2022, in prep.

Predictors	BURNT AREA	FIRE SIZE	FIRE INTENSITY
Maximum monthly number of dry days	70.23	11.16	-14.27
Seasonality of monthly number of dry days	59.26		-16.18
Maximum mean monthly vapour pressure deficit (Pa)	39.11	5.12	-47.55
Maximum mean monthly diurnal temperature range (K)	19.82	14.46	
Mean wind speed of the hottest month (m s^{-1})	-6.8	14.41	
Gross primary production (g C $m^{-2} a^{-1}$)	63		-18.47
Seasonality of gross primary production	14.78	5.18	
Fractional tree cover	-18.74	-5.25	9.08
Fractional shrubland cover	26.35	7.61	
Fractional grassland cover	52.91		-11.91
Vector Ruggedness Measure	-21.39	-5.78	
Topographic Position Index	18.86		
Road density (km ⁻²)	-37.32	-16.47	8.58
Fractional cropland cover	-10.05	-22.42	
Population density (km ⁻²)	10.64		-13.49
Mean monthly lightning ground-strikes (km ⁻²)	12.35	5.5	-7.15
R^2 (McFadden, 1974)	O.69	0.29	0.27

Centre for Wildfires, Environment and Society

Centre for Wildfires, Environment and Society

LEVERHULME

Centre for Wildfires, Environment and Society

LEVERHULME

Centre for Wildfires, Environment and Society

MODELLING THE IMPACT OF HUMANS ON FIRE

LEVERHULME

Centre for Wildfires, Environment and Society Harrison et al., 2022, ICAANE

THE IMPACT OF FRAGMENTATION ON FIRE is influenced by VEGETATION

LEVERHULME

Centre for Wildfires, Environment and Society Harrison et al., 2021, ERL

THE ROLE of RESPROUTING

LEVERHULME

Centre for Wildfires, Environment and Society Harrison et al., 2021, ERL

RESPROUTING

LEVERHULME

Centre for Wildfires, Environment and Society

Shen et al., in prep.

	Est.	S.E.	z val.	р	VIF
(Intercept)	2.3	0.07	34.82	0	
Fire return interval	-0.11	0.01	-10.75	0	1.05
GPP	0.33	0.03	11.05	0	1.03
Herb cover	-2.27	0.12	-18.28	0	1.02

MODEL FIT: Pseudo-R² (Cragg-Uhler) = 0.05 Pseudo-R² (McFadden) = 0.04 Observations: 26426

Shen et al., in prep.

IMPACT OF RESPROUTING on RECOVERY

LEVERHULME

Centre for Wildfires, Environment and Society Kelley et al., 2024, GMD

TAKE-HOME MESSAGES

- SOTA fire models DON'T perform well
- empirical analyses provide insights on how to model fire better
- the controls on burnt area, fire size and fire intensity are different
- human impacts affect different components of fire regime
- vegetation properties are important for modelling fire
- impact of fragmentation differs with veg type
- vegetation traits vary with fire regimes
- modelling e.g. resprouting will have impact on recovery

LEVERHULME

Centre for Wildfires, Environment and Society