Decadal snow cover trends in response to precipitation and temperature forcing Richard Essery, Cécile Ménard, Eleanor Burke

, 62

MIPs, MIPs, MIPs

GSWP3 large-scale forcing data

Elevation bias in reference sites c.f. GSWP3

Bias-corrected temperature

Bias-corrected snowfall

ESM land surface schemes in ESM-SnowMIP

LSS	ESM / GCM
JULES_GL7	HadGEM3
JULES_UKESM	UKESM1
"MOSES"	HadCM3
CABLE	ACCESS
CLASS	CanESM
CLM5	CESM
CoLM	BNU-ESM
EC-Earth	EC-Earth
ISBA	CNRM-CM
2 × JSBACH	MPI-ESM
MATSIRO	MIROC
3 × ORCHIDEE	IPSL-CM

+ snow physics and hydrology models

Snow cover duration

Snow cover duration

Snow cover duration mean and trend statistics

Conclusions

- observed 1980-2010 snow cover durations lie within the interquartile ranges of the ESM-SnowMIP ensemble for four long-term snow monitoring sites
- ensemble spread is large, but correlation between models is large due to common forcing
 - model spread will be larger in CMIP6 with atmospheric coupling and feedbacks than in GSWP3 without
- models predict that snow cover duration has decreased at all four sites but tend to exceed the observed trends (c.f. snow cover extend trend underestimated in CMIP5)
- JULES multi-layer snow model has longer snow cover duration and larger trends than the zero-layer snow model