## A (subgrid) song of ice and thaw

Estimating lateral thaw of permafrost peat plateaus

Noah Smith<sup>1</sup>, Sarah Chadburn<sup>1</sup>, Eleanor Burke<sup>2</sup>, Iain Hartley et al. <sup>1</sup>University of Exeter, <sup>2</sup> Met Office

# Previously in JULES...

Explicitly modelling microtopography

# **Two interacting columns** with elevation difference



Ice wedge polygons @ Samoylov and Kytalyk



Palsa - mires @ Iskoras and Stordalen



# What we found

Explicitly modelling microtopography

**Two interacting columns** with elevation difference





## Questions...

**Two interacting columns** with elevation difference



• Will this work on the pan-arctic scale?

• How quickly will thaw happen?



Making simplifications

Two tiles simplified



#### Maximum depth\_unfrozen between 2005-02-01 and 2015-01-01





Filtered for regions where high tile thaw depth >= 1 m







'Current' (2005 – 2015)

'current' maximum depth\_unfrozen between 2005-02-01 and 2015-01-01



'ssp126' (2072 – 2082)

ssp 126 Maximum depth\_unfrozen between 2072-02-01 and 2082-01-01



'ssp370' (2072 – 2082)

ssp 370 Maximum depth\_unfrozen between 2072-02-01 and 2082-01-01



'ssp585' (2072 – 2082)

ssp 585 Maximum depth\_unfrozen between 2072-02-01 and 2082-01-01



## Lateral thaw

#### 2D transect (offline)



## Validation at Iskoras



# Validation at Iskoras



#### Estimating lateral thaw rate



**Plan 1:** lateral thaw equivalent to net energy flowing laterally into the frozen-unfrozen interface.



Lateral thaw distribution above 50N (2015-2025)







#### Estimating lateral thaw rate



**Plan 1:** lateral thaw equivalent to net energy flowing laterally into the frozen-unfrozen interface.

**Plan 2:** thaw rate = amount thawed beyond reference

#### Estimating lateral thaw rate



**Plan 1:** lateral thaw equivalent to net energy flowing laterally into the frozen-unfrozen interface.

**Plan 2:** thaw rate = amount thawed beyond reference.

**Plan 3:** go for it and simulate subsidence by ice thawing.

#### To do: lateral thaw rate $\rightarrow$ area thawed?

Forests on thawing permafrost: fragmentation, edge effects, and net forest loss (Baltzer et al. 2013)



Vegetation Canopy and Radiation Controls on Permafrost Plateau Evolution within the Discontinuous Permafrost Zone, Northwest Territories, Canada (Chasmer et al. 2013)



Accelerated thawing of subarctic peatland permafrost over the last 50 years (Payette et al. 2004)



