

Geological controls of discharge variability in the Thames Basin, UK from cross-spectral analysis: observations versus modelling

Graham Weedon¹, John Bloomfield², Emma Robinson^{*3}, Stephen Turner³, Emily Crane² and Martin Best¹

- * = Presenter,
- ¹ = Met Office, ²= BGS, ³ = UKCEH
 JULES Annual meeting, 15th Sept 2022
 www.metoffice.gov.uk

Н Crown Copyright 2021, Met Office

Methodological details

Met Office

Hypothesis: Discharge variability is controlled by the underlying rocks. Bloomfield et al (2009, *J. Hydrol.*, 373, 164-176, doi: 10.1016/j.hydrol.2009.04.025) showed that BFI is strongly influenced by geology – especially rock permeability within the Thames Basin.

Method: Spectral and cross-spectral analyses (Weedon et al., 2015, JHM, 16, 214-231, doi: 10.1175/JHM-D-14-0021.1).

Observations 1st Jan 1990 to 31st Dec 2014:

- a) CEH-GEAR daily <u>basinwide rainfall</u> (converted to m³ s⁻¹).
- b) NRFA daily <u>discharge</u> (m³ s⁻¹) for Thames at Kingston plus **48 gauges in sub-catchments that drain to the Thames or Thames estuary**.
- c) <u>Fractions</u> of geological formations.

JULES runs:

- a) vn6.2 standalone, RAL3 configuration (including TOPMODEL).
- b) 1 km² grid plus 1 km² routing (Davies et al., 2022, NERC EDS Environmental Information Data Centre (Dataset) doi: 10.5285/6da95899-f3b8-4089-b621-560818aa78ba), hourly time step, soil ancils copied from ANTS-derived 2.2 km² grid.
- c) Forcing daily CHESS data (Robinson et al., 2017, HESS, 21, 1189-1224, doi: 10.5194/hess-21-1189-2017) disaggregated to hourly except CEH-GEAR1hr hourly precipitation (Lewis et al., 2018, J. Hydrol., 564, 930-943, doi: 10.1016/j.hydrol.2018.07.034).

Overall concept

Met Office

Cross spectral methods of Weedon et al. (2015) JHM

'Transfer Function' Approach

Thames Basin

Met Office

Observations

JULES RAL3

Met Office

Discharge variability is linked to bedrock permeability, but in large basins (>300 km²) moving averaging dominates

Saturated Hydraulic conductivity

JULES is often run with 3 m of soils, but e.g. over Chalk the soil is often much thinner and/or macropores connect the surface to the bedrock

<u>100% Sand experiment:</u> Soil parameters revised using '100% sand' for Chalk-dominated catchments

- Observations
- JULES-RAL3
- 100% Sand JULES-RAL3

Increased *satcon* using '100% sand' soil parameters improves discharge variability in Chalk-dominated catchments

Conclusions for the Thames Basin

Met Office

1) JULES performance (modelled v observed discharge) in smaller catchments depends on the geology. In smaller catchments the lag1 autocorrelation (serial correlation) is generally too low (BFI too low). Performance is worst where there is high permeability bedrock (high hydraulic conductivity). Performance is ok in larger catchments with moving averaging (due to routing) though there is often too much flashiness.

2) In JULES hydraulic conductivity is currently determined solely by *satcon* in soils. Experimentally increasing *satcon* (e.g. 100% sand experiment) consistent with soil pedotransfer functions leads to improved discharge variability in chalk-dominated catchments. This has little effect on mean bias error (linked to evapotranspiration). However, a far higher range of satcon will be required to match bedrock characteristics.

3) Potentially future modelling of groundwater in JULES will also improve discharge variability, but when modelling soils as 3 m thick *satcon* also needs attention/revision.

4) Paper submitted August 2022 to *Journal of Hydrology*.