

The implementation of lateral flows in stand alone JULES

Heather Ashton, Martin Best + others

JULES Meeting, 19th-20th June 2013

Overview

- What are lateral flows?
- Why?
- How?
- First results
- Future work

- High resolution soils need lateral flows
 - NWP models at high resolution (1.5km)
 - Plans to test impact of running high resolution soil in low res model (EMBRACE)
- Orography is resolvable
 - Orographic enhancement & wet valleys
- Continental warm bias?
- Impacts on things we care about...
 - River flow, inundation, surface water flooding

Results – Slopes & Lateral Fluxes

East Flux 800 600 400 200 100 300 500 600 a 400 -4e-6 2e-5 0 4e-6 $\partial \psi_{i,j}$ W_{i} $= K_{i,j} |\sin \alpha$ ∂x

• Similar, but opposite sign • Slope more important than $\left(\frac{\partial \psi_{i,j}}{\partial x}\right)$

Results: Time series of surface energy fluxes differences

- Standalone JULES running with high res soils
 & lateral flows forced with WFDEI
- Integrate high res soils & lateral flows into UM
 - Parallelization?
- Aggregating over soils?

Any Questions?

Hydraulic conductivity (K_{min}) [kgm⁻²s⁻¹]

© Crown copyright Me

Met C

