Fires in Russian forests

Prof. Heiko Balzter

Department of Geography

hb91@le.ac.uk

Fire

- threatens sustainable development
- alters land / atmosphere exchange and releases greenhouse gases
- causes air pollution
- is expected to accelerate under climate change scenarios in some biomes (Amazon, Siberia)
- creates a dynamic mosaic of regenerating patches (heterogeneity, forest edges)
- exhibits high spatial and temporal variability University of

Research projects

- Burned area mapping for greenhouse gas accounting SIBERIA-2 (EU FP5)
- Earth Observation for assessment of forest disturbances induced
 Carbon emissions in Central Siberia SibFORD (EU INTAS FP6)
- Environmental assessment methods GEOLAND (EU GMES FP6)
- CARBOAFRICA (EU FP6)
- Forest fire intensity dynamics FFID (NERC)
- Forest structure retrieval from RADAR CORSAR (NERC)
- Statistical modelling of fire incidence- Climate and Land Surface Systems Interaction Centre (CLASSIC)
- PhD: Post-fire photosynthetic activity Maria Cuevas Gonzalez (Alcala, Spain)
- PhD: Pre-fire biomass accumulation Daniel Smith (Leicester)
- PhD: Land-surface modelling and Earth observation of fire/climate interactions Darren Ghent (Leicester)
- PhD: Fire intensity Gareth Mottram (KCL)

Forest structure

Surface vs. crown fires

ladder fuels can determine whether a surface fire develops into a stand-replacing crown fire

ICESAT-GLAS

 Full waveform over a site in Alaska

Profiling LiDAR can potentially retrieve undergrowth information.

ICESAT-GLAS

Waveform model of a simulated profile

Results of the waveform modelling:

10

20

0

This waveform can be modelled as a sum of two Gaussian distributions. $WV \sim N(14.290133, 9.7300970) + N(43.994922, 1.9650509)$

where the parameters of the Normal distributions are given as mean and standard deviation.

95% of the first target layer is located between 33.750327 and -5.1700613. 95% of the second target layer is located between 47.925024 and 40.064820.

50 Created output plot file: waveform_model_fit.emf

30

40

50

Energy emissions

Fire radiative energy is proportional to burned biomass

Open points – grassy fuels Solid points – woody fuels

Slide by M. Wooster, KCL

Burned area

Forest fires in Central Siberia from remote sensing

Balzter et al. (2005), Geophysical Research Letters 32, L14709.1-L14709.4, doi:10.1029/2005GL022526

Burned area can be modelled as a function of the Arctic Oscillation and temperature anomalies.

The Arctic Oscillation is changing towards its positive phase

AO Index (source: NOAA Climate Prediction Center)

Siberia is warming 1880-2001 Temperature Time Series

Number of Years	122
Temperature increase (slope)	<u>1.5°C</u> 100 yrs

Averaged over 50°-80° N; 80° to 120° E (source: Global Historical Climatology Network)

Regional clustering of fire scars

- Poisson modelling of fire frequency per 2.5° grid box suggests that local fire frequency is influenced by
 - Local summer rainfall anomalies
 - Human population density

Forest fires

Apr – Jul rainfall anomalies in mm / day

Chris Taylor (*CLASSIC*, CEH Wallingford) suggested that the fires might correlate spatially with rainfall <u>anomalies</u>

Cause of spatial variability?

Vegetation phenology

Studies of vegetation phenology

 Advance of the onset of spring from remote sensing over Siberia

Balzter et al. (2007) *Journal of Climate*, doi: 10.1175/JCLI4226

90°E 95°E 100°E 105°E 110°E 115°E 120°E 125°E 130°E 135°E 140°E 145°E 150°E 155°E 160°E 165°E 170°E 175°E

(a) NINO3 Index and length of season anomalies

90°E 95°E 100°E 105°E 110°E 115°E 120°E 125°E 130°E 135°E 140°E 145°E 150°E 155°E 160°E 165°E 170°E 175°E

(b) Arctic Oscillation Index and start of season anomalies

Length of the growing season is correlated with climate indices.

Balzter et al. (2007) *Journal of Climate*, doi: 10.1175/JCLI4226

Conclusions - 1

- 1. Vegetation (fuel) structure information may help inform JULES.
- 2. Burned area data are now available globally (e.g. L3JRC, GLOBCARBON, MODIS) and can be used to validate fire model predictions.
- 3. Satellite data analysis can help generate process knowledge and quantify parameters (e.g. ignition probability).

Conclusions - 2

Open questions:

- Dynamics of fuel mass build-up before fire
- Fuel moisture content dynamics and extreme fire seasons
- Modelling human / natural ignition sources

