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Total CO, emissions are strongly linked to total warming

. » Allows us to quantify
exactly what we must

* Akey message from
do to meet targets

last IPCC report (AR5:
2013/14)

« Carbon “budget” we

* Long-term warming is can spend

linearly related to total
emissions of CO,.

* For a given warming
target, higher
emissions now imply
lower emissions later.

* Quantifying this drew
together ALL of
climate science into a

ggggggggg single straight line!
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* Therefore our link from
emissions to climate change is
biased low* (all other aspects
being correct)

* In which case, we must cut
emissions faster and sooner
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Zaehle et al., 2014. J. Clim.,
https://journals.ametsoc.org/jcli/article/28/6/2494/35341/
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Figure 1. Schematic of the nitrogen cycling within the JULES-CN model. Carbon fluxes are shown in red,

Nitrogen fluxes in grey. Nitrogen limited carbon fluxes are highlighted in blue.

Wiltshire et al., 2020. GMDD,
https://gmd.copernicus.org/preprints/gmd-2020-205/
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Designed from outset
to be built on top of
JULES carbon
structure

Also implemented to
be consistent with
layered soil carbon
/biogeochemistry

Burke et al., 2017. GMD,

https://gmd.copernicus.org/articles/10/959/2017/ _‘
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JULES-CN stocks and flows
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Davies-Barnard et al., 2020. BG (accepted),

https://bg.copernicus.org/preprints/bg-2019-513/
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© Evaluation ongoing...

Davies-Barnard et al., 2020. BG (accepted),
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Process complexity of CMIP
ESMs with carbon cycle
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* 6 of 11 models

N-cycle

Include terrestrial

CMIP6 models at 4xCO,
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* N-cycle models less
sensitive than non-N
- To CO2 and to warming

» Reduced spread in model
response

Arora et al., 2020. BG,
https://bg.copernicus.org/articles/17/4173/2020/
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Concluding comments
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* Terrestrial N-cycle has leading order control on land carbon sinks

 Previously neglected in CMIP models/IPCC assessments
- Major over estimate of land carbon response
- Vital that JULES and UKESML1 fill this gap

* JULES-CN now does so, and UKESM1 submission to CMIP6
- Increased complexity (N-cycle) in land models has led to reduced spread of response
- Enables more reliable carbon budget estimates

* Next steps
- Development and evaluation — e.g. BNF, N-uptake response
- Coupling to atmospheric composition — N-dep and soil NOx emissions
- Interaction with other BGC — e.g. permafrost (see Eleanor’s talk, Thursday)
- Other (phosphorus) nutrient cycles



