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CO2	seasonal	cycle:		
models	differ,	none	are	right	
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•  Current	models	have	too	many	parameters,	and	s7ll	fail	key	

benchmark	tests	
•  New	theory	and	observaFons	on	plants	and	ecosystems	support	

a	different	model	structure:	
fewer	(not	more!)	PFTs	

fewer	parameters	

universal	principles	
•  Simpler	models	embodying	clear	hypotheses	are	more	useful	

for	science	and	predicFon	

Why	do	we	need	a	universal	model?	



	
•  The	“missing	law”	of	biology	in	Earth	System	models	
•  Natural	selecFon	is	ubiquitous	and	extremely	effecFve	

“Nothing	in	biology	makes	any	sense	except	in	the	light	of	evolu7on”	–	T.	

Dobzhansky	

•  Explicit	hypotheses	can	be	quanFtaFvely	tested	

EvoluFonary	opFmality:	a	basis	for	theory	in	
ecosystem	science	



	
•  VariaFon	of	parameters	over	days,	weeks	and	months	
•  VariaFon	of	parameters	across	environments		
•  Short-term	response	≠	longer-term	response	(fundamental,	and	

generally	ignored)		
Ø  example:	plant	respira7on	–	almost	flat	response	to	temperature	

Ø  may	be	the	cause	of	the	seasonal	cycle	problem?	

Ø  also	applies	to	photosynthesis	

AcclimaFon:	bridging	Fme	scales	



	
•  OpFmizaFon	of	a	phenotypically	plasFc	trait	

What	acclimaFon	is	



	
•  An	effect	that	goes	away	(cf.	“downregulaFon”	in	response	to	

enhanced	CO2:	Vcmax	declines,	Anet	increases	...)	
•  An	idiosyncraFc	effect,	making	modelling	even	more	complex	

Ø  it	makes	modelling	simpler,	by	predic7ng	universal	rela7onships!	

What	acclimaFon	is	not	



	
	



	
	



The	“exchange	rate”	between	CO2	and	water	

•  Least-cost	hypothesis:	minimize	a(E/A)	+	b(Vcmax/A)	
•  This	results	in:	

χopt		=	Γ*/ca	+	(1	–	Γ*/ca).	ξ/(ξ	+	√D)	
	 	where:	

ξ			=	√[b(K	+	Γ*)/1.6a]	
K		=		KC	(1	+	O/KO)	
	
a		=		rsh2ρsη/2(Δψ)ksρw	
b		=	constant	

Predictability	of	the	ci:ca	raFo	(χ)	

H	Wang	et	al.	Nature	Plants	(in	revision)	
bioRxiv		hbp://dx.doi.org/10.1101/040246		



ln	χ/(1	–	χ)	versus	environmental	predictors	
(from	global	δ13C	data:	>	3500	measurements)	

	
	 	predicted 	 	 	fibed	

	
temperature	(K) 	 			0.054	 	 	 			0.052	±	0.006	
ln	vpd 	 	 	 	 	–0.5 	 	 	 	–0.55			±	0.06	
elevaFon	(km)	 	 	–0.08 	 	 	 	–0.11			±	0.03	
	
R2	=	0.39	



parFal	residual	plots	
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•  Plant	FuncFonal	Types	have	different	ci:ca	raFos	because	they	

live	in	different	climates.	

A	universal	relaFonship	



	
•  PFTs	have	different	ci:ca	raFos	because	they	live	in	different	

climates.	
•  Duh.	

A	universal	relaFonship	



The	ac7vity	of	the	CO2-fixing	enzyme,	Rubisco	

•  PredicFons:	Vcmax	acclimates	so	as	to	make	use	of	the	available	
PAR	(not	less	or	more)	

Ø  increases	in	proporFon	to	PAR	
Ø  increases	weakly	with	temperature;	less	steeply	than	

enzyme	kineFcs	
Ø  value	at	standard	temperature	(e.g.	25˚C)	declines	with	

temperature	

Predictability	of	carbon	fixaFon	capacity	
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traits	versus	growth	temperature	

	
	 	predicted 	 	 	fibed	

	
ln	Vcmax	 	 	 	 	0.049*	 	 	 	0.033	±	0.016	
ln	Jmax 	 	 	 	 	0.024 	 	 	 	0.025	±	0.011	
ln	Rdark	 	 	 	 	0.049 	 	 	 	0.051	±	0.016	
	
*slope	from	Rubisco	kineFcs	is	0.089	



	
•  higher	Vcmax	(and	leaf	N)	in	dry	environments	
•  higher	Vcmax	(and	leaf	N)	at	high	elevaFons	
•  lower	Vcmax	(and	leaf	N)	at	elevated	CO2:	‘down-regulaFon’	

More	(true)	predicFons	



Predictability	of	leaf	N	content	(ln	Narea)	

	
	 	predicted 	 	 	fibed	

	
χ	(from	δ13C) 	 	 	–0.62 	 	 	 	–0.61			±	0.25	
ln	PAR 	 	 	 	 			1 	 	 	 	 			0.87			±	0.10	
mean	annual	T 	 	–0.048	 	 	 	–0.047	±	0.007	
	

N	Dong	et	al.	Global	Ecology	and	
Biogeography	(in	revision)	
	
N-S	Australia	transect	



•  lm(formula)=)logN)~)chi)+)logfpar)+)Nfixer)+)mGDD0)+)logLMA,))
•  ))))data)=)C4))

•  Residuals:)
•  )))))Min)))))))1Q)))Median)))))))3Q))))))Max))
•  I2.14395)I0.22728)I0.00295))0.24833))1.18308))

•  Coefficients:)
•  )))))))))))))EsRmate)Std.)Error)t)value)Pr(>|t|))))))
•  (Intercept))I5.504849)))0.822333))I6.694)7.53eI11)***)
•  chi)))))))))I1.015438)))0.254718))I3.987)8.00eI05)***)
•  logfpar))))))0.990772)))0.136158)))7.277)1.88eI12)***)
•  Nfixeryes))))0.288749)))0.044318)))6.515)2.23eI10)***)
•  mGDD0)))))))I0.039074)))0.007094))I5.508)6.59eI08)***)
•  logLMA)))))))0.426740)))0.040821))10.454))<)2eI16)***)
•  III)
•  Signif.)codes:))0)‘***’)0.001)‘**’)0.01)‘*’)0.05)‘.’)0.1)‘)’)1)

•  Residual)standard)error:)0.3803)on)392)degrees)of)freedom)
•  MulRple)RIsquared:))0.4972, )Adjusted)RIsquared:))

0.4908))
•  FIstaRsRc:)77.54)on)5)and)392)DF,))pIvalue:)<)2.2eI16)
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Ra7o	of	investments	in	electron	transport	and	carboxyla7on	
	
•  Jmax	has	a	cost		
•  That’s	why	the	response	of	J	to	PAR	is	not	linear	
•  PredicFon	based	on	the	Smith	formula	for	J:	

Ø  the	ra7o	Jmax/Vcmax	has	an	op7mum,	

	 	Jmax	=	4	k	Vcmax	where	
	 	k3		=	(1/c*)	(ci		–		Γ*)(ci		+		2Γ*)2/(ci		+		K)3 	and	
	 	c*	≈	0.41	(from	experimental	data) 			

Predictability	of	the	Jmax:Vcmax	raFo		



Jmax/Vcmax	depends	on	growth	temperature	

H	Wang	et	al.	(unpublished	results)	



Photosynthesis	on	a	large	scale	
	
•  A	further	consequence	of	the	theory:		

Ø  GPP	is	propor7onal	to	absorbed	PAR	(Monteith	1977)	

•  This	is	the	foundaFon	of	LUE	models!	
•  So	now	we	can	predict	GPP,	knowing	a/b	and	c*:	

Ø  Need	satellite	data	on	green	vegeta7on	cover	(fAPAR)	
Ø  Don’t	need	PFTs,	or	any	PFT-specific	func7ons	
Ø  Can	predict	environmental	effects	on	LUE	from	first	principles	(including	

CO2	effects)	

Predictability	of	GPP	
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The	universal	GPP	model	
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Fig. 3. Monthly gross primary production (GPP). Predictions from eqs (2) and (3); observations 

based on CO2 flux data in the FLUXNET archive. The regression line through the origin is 

imposed as the black solid line; the dashed line is the 1:1 line. 

Global	data-model	comparison	of	monthly	GPP	
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Comparison	with	Ainsworth	&	Long	(2005)	meta-analysis	of	FACE	
experiments	(≈	200	ppm	CO2	enhancement):	
	

	 	 	 	meta-analysis 	 	 	predicted	
LUE 	 	 	12.2		±	9	%	 	 	 	15.2	%	
WUE 	 	 	54.3		±	17	% 	 	 	55	%	
Jmax/Vcmax 	 				5.2	±		2.8	% 	 	 	9.8	%	
gs 	 	 						–20					±	3	%	 	 	 	15	%	

Predictability	of	CO2	effects	



•  Maintenance	of	funcFonal	and	stoichiometric	balance	≠	fixed	
allocaFon	fracFons	

•  Key	to	C-N	cycle	coupling:	opFmal	allocaFon		

AllocaFon:	from	GPP	to	biomass	producFon	
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B.	Stocker	et	al.,	unpublished	
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SwissFACE	(Lüscher	et	al,	2004	GCB)	

•  temperate	grassland	
•  factorial	CO2	x	N-ferFlizaFon	experiment	
•  modelled	with	daily	climate	and	CO2,	actual	N-ferFlizaFon	and	harvest	
•  no	parameter	tuning	to	fit	the	results	
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Swiss	FACE:	harvested	biomass	



Swiss	FACE:	LAI	
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Swiss	FACE:	root	mass	
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It’s	the	mycorrhizae,		
stupid!	

Why	do	some	N-limited	ecosystems	respond/
not	respond	to	enhanced	CO2?	
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Terrer	et	al.	(2016)	Science	



Age
MAT

Length
System Type

MAP
Fumigation Type

∆CO2

Mycorrhizal Type
N−availability
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Sum of Akaike weights

Terrer	et	al.	(2016)	Science	

It’s	the	mycorrhizae,	stupid!	



	
•  GPP	can	be	predicted	from	fAPAR	with	a	single,	universal	

equaFon.	
•  E		=		1.6	gs	D,	where	gs	=	(A/ca)/(1	–	χ)...		

Ø  transpira7on	is	predictable	in	the	same	way.	

•  CO2	effects	can	be	predicted	with	the	same	equaFon.	
•  The	next	big	challege	is	to	‘close	the	loop’	between	GPP	and	

fAPAR,	requiring	a	comprehensive	treatment	of	allocaFon.	

Conclusions	


