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* Erosion by water is among the most severe
threats to solil in Europe.

« Our modelling system combines the CEH
Grid-2-Grid river flow model with Leeds
PESERA soil erosion model;

» We predict the effects of climate and land-use
change on soil erosion and sediment transport
in the UK and Europe.
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Hydrology in JULES/Grid-2-Grid
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PESERA Model
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Driving Data: Regional Climate Models

GCM RCM

Temperature (°C)

« Climate change: Future warming of 1.8-4.0 °C by 2100.
« Wetter winters & drier summers in NW Europe; more extremes.

« For Earth Systems Science applications, climate models need
hydrology: driver of heat and water fluxes at land surface.

« 25 km RCM offers significant improvement over 2.5° (~300 km)
GCMs; still too coarse for hydrology, need to parameterize.

Centre for
Eeology & Hydrology Jones et al., 2002
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Climate Impacts on Solil Erosion
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- By 2080s: Reduced runoff and erosion in S. Europ; s
increases in Netherlands, Denmark, Baltic;

« No consistent picture for the UK; mostly a reduction;
« Land-use change is sufficient to outweigh climate forcing.

Centre for
Ecology & Hydrology Dadson et al., 2010 Geophysical Research Abstracts, 12, EGU2010-7047
Dadson et al., in prep.
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Land-use, Climate, and Soil Erosion
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« Under natural vegetation: Warmer — higher
evaporation, more vegetation, less runoff, less
erosion;

« Wetter — more rapid vegetation growth, less
runoff, and less erosion (unless plant growth is
constrained by lower temperatures)

 Managed landscapes may be more susceptible
to climate change, but: effective management
at local scales may mitigate the local effects of
changing regional and global climatic drivers

Centre for
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NATURAL ENVIRONMENT RESEARCH COUNCIL



Large-scale inundation modelling

Where does the sediment go?
Need to simulate overbank inundation processes...
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topography height above the grid- or the Exe in
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Global applications: Niger Inland Delta
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Floodplain sedimentation

Sediment & C deposition
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* Floodplain Geomorphology and Biogeochemistry (FGB model)
has been developed at Exeter

» Represents floodplain overbank sedimentation (Nicholas et
al., 2006), river channel migration (lkeda et al., 1981), and
carbon accumulation and remobilization (RothC, Coleman and
Jenkinson, 1996)

« Used to explore the effect of changes in discharge and water
table on total carbon storage

Centre for
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Carbon sequestration

Over millennial time-
scales, increases in
storage from deposition
on floodplains may be
outpaced by faster
oxidation of floodplain
carbon when water
tables are lowered
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N. Europe is likely to experience an increase in soil erosion
under all scenarios; whereas S. Europe will probably see a
decrease in erosion;

The effects of changing land-use may be equivalent in
magnitude to the effects of changing climate;

Representation of sub-grid-scale floodplain processes leads to
improved representation of energy and mass fluxes in
geomorphic and land surface climate applications;

Although floodplains are a large store of carbon, they may be
net sources to the atmosphere when carbon produced by
vegetation and carbon from the river catchment are taken into
account;

Over millennial time-scales, increases in carbon storage from
deposition on floodplains may be outpaced by faster oxidation
of floodplain carbon when water tables are lowered.

Centre for
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