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Key challenges

+ Linking across scales: can we predict the
hydrological response to climate change?

* Representing feedbacks: how does the land-
surface govern fluxes of water, energy, and carbon?

« Sustainable water futures: how can policymakers
balance adaptation to climate change with food
security, biodiversity, and other ecosystem services?
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Water use and ecosystem services

AGRICULT
s IRRIGATION

Water use in the Rafiji Basin, Tanzania.
‘Upstream irrigation has dried wetlands, affected wildlife and reduced

hydropower.

‘Need to understand links between cIima Qange,land yse and water,

Pheianalferhereman W AND THE ENVIRONMENT e




Hydrological feedbacks in the Earth system

Land-atmosphere coupling strength (JJA), averaged across AGCMs
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‘Feedbacks strongest in transition zones between wet and dry climates.
‘Need to know state of soil moisture in order to provide accurate forecasts.

-Changes to water management can affect regional climate.
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Maximum wetland fraction (1993-2004)
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Important Wetlands in Africa
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Seasonal Inundation

Niger Inland Delta

Lake Chad and surrounding areas
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Flow routing and inundation in JULES
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Flow routing and inundation in JULES
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« HydroSHEDS digital topography (90 m hydrologically sound DEM)
« Used to produce inundation parameters for large-scale model
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Land-atmosphere feedbacks in W. Africa

‘Niger Inland Delta, Mali;

‘inundation drives water vapour flux and
temperature anomaly;

-Seasonal flooding provides up to 50% of
water vapour to atmosphere.
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Impact of flooding on water and energy fluxes

Flow, Q, [m°s™]
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*Timing of flows accurately
reproduced (R? = 0.70); ongoing work
to improve groundwater in JULES

Satellite observations show good
representation of seasonal inundation
pattern (passive & active microwave,
near infra-red);

Evaporation increases from 11 to 22
mm/day with inundation scheme;

«Evaporation reduces surface
temperature by 5 K and diurnal
temperature range by up to 15 K.

Dadson et al., 2010, J. Geophys. Res., 115: D23114
Prigent et al., 2007, J. Geophys. Res, 112: D12107
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Observed land-atmosphere feedback
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 Development of a “wetland breeze”;
* 50% more daytime storms during floods

- Better land-surface modelling will improve weather forecasts in
West Africa.
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Links between the water and carbon cycles
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‘Methane (CH,) is the second most important greenhouse gas after CO..
*Wetlands are largest natural source of CH,, via anoxic degradation of organics.
*CH, fluxes from wetlands are poorly quantified (105-278 Tg yr-!, 75% tropical).
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Water Resources and Ecosystem Services
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Zwarts et al., 2005

Proposed new 90 MW dam at Fomi will:

— reduce fish populations by up to 36%
— disrupt complex relation between flooding and ecology (3-4 million staging waterbirds)
— but increase rice production in newly-irrigated areas by 320,000 t (to meet 90% of
domestic demand)
How can policymakers balance need for mitigation of & adaptation to climate
change with food security, wetland biodiversity, and other ecosystem

services?
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