

Quantifying the impacts of tropospheric ozone UNIVERSITY OF on crop production at regional scale using **JULES-Crop**

Met Office

Felix Leung

Department of Geography, The University of Exeter, UK

Supervisors: Met Office: Dr. Andy Wiltshire, Dr. Jemma Gornall University of Exeter: Prof. Stephen Sitch, Prof. Peter Cox

Ozone production and trend

Representative Concentration Pathway (RCPs) of tropospheric ozone trajectories

Biochemical effect of ozone on plant

Crop production loss due to ozone

Average crop production loss from 2 metrics for the 4 crops, year 2000. The production loss numbers are normalized to the grid cell area Atmospheric Environment 43 (2009) 604-618

SoyFACE project

- O₃ Free Air CO₂ Enrichment (FACE-O₃) on soybean at Illinois, USA
- Chamber environment modifies plant response and underestimate the yield losses.
- SoyFACE allows controlled CO₂ and O₃ enrichment to simulate different RCPs in 2100.
- 20m diameter
- Fumigate 9 hours per day
- Stop fumigation if the leaves are wet

Joint UK Land Environment Simulator (JULES)-Crop

- Cropland and pasture represent 12% and 26% of land surface
- 5 normal plant functional types
- C3 and C4 crops
- Different day sensitivity and growth rate.
- Simulate farm-level productivity
- 4 Crop functional types
- Variables associated with climate change e.g. drought, flood, rising temperature

Vc max calibration

Sources	Description	Vc max	Unit
Kattge et al. (TRY database , accessed on 12/05/2015)	Average of all literatures with soybean Vc max	121.89	µ mol m⁻² s ⁻¹
Betzelberger et al.	SoyFACE measurement	120	µ mol m⁻² s ⁻¹
JULES C3 grass	Used as soybean default	58.4	µ mol m⁻² s ⁻¹

Soybean parameters calibration

JULES Parameters	Default	Tuned
Top leaf nitrogen concentration (kg N/kg C)		0.13
Scale factor of top leaf nitrogen to Vc _{max}		0.001
Ratio of root N to leaf N	1.0	0.1
Ratio of stem N to leaf N	1.0	0.1
Fractional reduction of photosynthesis by O ₃	1.40	0.825
(sensitivity) (mmol m ⁻²)		
Threshold of ozone flux (mmol m ⁻² s ⁻¹)	5.0	4.0

Calibration with SoyFACE site (Bondville Fluxnet)

Comparison of calibrated and standard JULES

Calibration of ozone damage on soybean

Historical simulation

- Black: climate change Green: detrended climate change
- **Red**: CO₂ and climate **Black dashed** : FAO observation
- Blue: O₃ and climate **Red dashed**: detrended FAO observation
- **Purple**: CO₂, O₃ and climate change
- Climatology: CRU-NCEPv4 , CO₂: CRUNCEP, O₃: HadGEM2-ES
- Time: 1961-2005
- can_rad_mod = 5

Сгор	Percentage of storage organ of harvested crop
Wheat	0.85
Soybean	0.6
Maize	0.7
Rice	0.8

Global economic impact of O₃ and CO₂

Economic value of crop is taken from FAO statistic using data from 1991-2005. Harvested area from FAO was multiplied with the model yield output

Summary for historical yield

- Simulated yields shows a larger magnitude of variability than the observed yields
- JULES is more sensitive to climate variation due to lack of human management in the model
- Very sensitive to precipitation and rainfall at water limited region, has high impact on crop yield (Williams & Falloon, 2015)
- The economic loss from ozone is highest for soybean
- Yield gap in developed countries such as USA, Europe and Argentina are smaller than developing countries e.g. China and India.
- JULES-crop tends to overestimate yields in tropical regions.

ENSO impact on crop yield in Argentina

Red dots above the line represent "El Niño" wet year and the blue dots are "La Niña" dry year

Calculate yield gap

- the crop area is categorised into 100 equal-area "bins" of similar climate (growing degree-day and annual precipitation) for each crops
- The maximum observed yield for the crop of the same climate bin is considered as the "attainable yield" and the yield difference from the attainable yield is the yield gap.

Relative impact of O₃ and CO₂ on yield

Future works

- In RCP 2.6 the ozone concentration decrease is not mainly due to clean air policy but climate change mitigation policy which also reduce ozone precursors
- This suggests climate change mitigation is more important than clean air policy
- Combination of RCP 8.5 climatology, RCP 8.5 CO_2 and RCP 2.6 O_3 gives the highest yield
- Solar Radiation Management with clean air policy can reduce global warming and improve yield