

Why vegetation modelling depends on luck.

Rosie Fisher Sheffield University

Content

- Short introduction to ED modelling strategy
- Challenges of modelling savanna ecosystems
- Predicting the future mortality and vegetation distribution.

Ecosystem Demography Model (ED) Moorcroft et al. (2001)

3. Successional stage

Part 1: Savanna Modelling.

- Area-based DGVMs are not very good at modelling savanna...
- They tend to give dominance either by trees or by grass...
- Can the ED model generate a savanna?
- What do we mean by a savanna anyway?

Simple Observations

- The canopy of savanna ecosystems is by definition, not completely closed by trees.
- 2. This arrangement is relatively stable through time. (as opposed to being the mid-point of a successional process).

Space in the Ecosystem Demography Model

- The original ED model has no concept of space
- Tree LAI is 'spread out' across the grid cell
- This is obviously a bad assumption.
- This model will never generate a savanna properly and must be changed.

Canopy Structure: 'perfect plasticity' solution

- New model considers space occupied by tree canopies
- Simulates canopy closure if canopy area = ground area
- Canopy trees get 100% light on top leaf surface
- Under-story trees all have the **same** light environment

Purves et al., PLOS One 2007.

Plantations vs. nature and the tragedy of the commons.

- In a forestry plantation, lots of identical trees are planted at the same time
- They all grow at the same speed and all have access to some full light
- So none of them die
- So, the resulting density of trees is much higher than in a natural forest
- This is how ED works...

Limitations of cohort approach

- ED is an **approximation** of a gap model
- It achieves this by **averaging** tree properties
- This means no trees are lucky or unlucky because of the circumstance of their birth(!)
- So, we have to introduce 'luck' (or asymmetry)
- If one cohort straddles the canopy intersection height z*, some are 'lucky' and make it into the canopy, and some are 'unlucky' and do not...

Model Results

In savanna areas, the model STILL tends towards canopy closure

C4 Grass Fraction

• Why?

Soil water & symmetric competition

- Asymmetric competition for light.
- Symmetric competition for water.
- All trees get equal share of water.
- 2 Possible Outcomes
 - All die
 - All grow slowly
- We need asymmetry for water competition

 or
- Root Closure Model.

'Root closure' model

- 1. Assume a given demand for water per unit crown area.
- 2. Plant initial seeding density
- 3. Trees all get the same water
- 4. If demand for water > supply
- 5. N = Area *Supply/Demand
- 6. Assume all the 'unlucky' trees die..;

Years

N limited by water availability N limited by space/light availability

Perfect asymmetry

- How many trees _should_ we have?
- One extreme = few trees get maximum water
- Other extreme = many trees get minimum water
- Constraints?
- Minimum N = Maximum root area?
- Maximum N = Minimum possible water use.
- How effectively do large individual monopolie resources?

Part 2: The Future, some thoughts.

What is happening at the dry/hot margins of intact ecosystems?

Pinon mortality in New Mexico 2002-3

Craig Allen USGS 2008

Pinon Mortality in SW USA

Fig. 2 Percentage mortality of piñon (open circles) and juniper (closed circles) trees at a 1.5 ha site, Mesita del Buey, near Los Alamos, New Mexico. For piñon, 16 of 484 trees survived (97% mortality), whereas for juniper, 559 out of 561 trees survived (< 1% mortality).

McDowell. New Phytologist 2007

Hydraulic resistance to drought

Fig. 4 The percentage loss of conductivity of excised root (connected circles) and stem (unconnected circles) segments of piñon (open circles) and juniper (closed circles) as a function of xylem pressure. These 'vulnerability curves' were obtained by the air-injection method (Linton *et al.*, 1998).

McDowell New Phytologist 2008

Juniper vs. Pinon

- Juniper: expensive vessels to deal with dry conditions
- It is **risk-averse**
- Pinon: bets droughts are long enough to starve to death...
- This **risk-taking** strategy was a good one, until now.
- Risk taking strategies are dominant in stable climates where magnitude of risk can be established
- How are risk-avoidance strategies distributed at present?

Define PFTs along functional trade-offs

Climate Regime

Leads to distribution of PFTs along gradient.

Climate Change pushes distribution rightwards

Climate Change leads to overall loss of biomass

Asymmetric competition changes impact of climate change

Impact of asymmetric competition on dieback How do large individuals monopolise resources?

Conclusions

- Savanna modelling requires some kind of 'closure' for water, analagous to canopy closure
- An exact solution depends on the ability of big trees to monopolise water resources
- Similarly, asymmetric competition along a stress gradient increases the impact of climate change.
- We need to know
 - 1. How asymmetric is competition for light?
 - 2. How is diversity of strategy (not species) maintained?

Impact of imperfect trade-off surface

After / Before

So...

- We know ecosystems are diverse
- But are they diverse along the right axes?
 We don't know until it's too late...
- Do other kinds of disturbance push the system towards a more resilient state
- Are different trade-offs correlated?
- Anything which increases the liklihood of resilient species already being in place will

Succession and ED

- What effect does the succession matrix have on dieback?
- This is disturbance driven, so, if anything, pushes the ecosystem towards a shorter time-frame
- BUT surviving other non-climatic disturbance MAY