Linking JULES to EO data: Phenology

Steven Hancock, Sietse Los, Peter North, Jose Gomez-Dans

JULES and EO

•We have an increasing range of Earth Observation data

- •Lots of high level products SWE, LAI, soil moisture Errors are often poorly quantified Can include biases
- •Using dates alone can hide issues.
- •Lots of low level products Radiance
- •Passive optical sensors are the most common Measure surface radiance

JULES reflectance

Surface reflectance is controlled by snow and vegetation
Snow melt is a big area so leave out for now

•LAI controlled by phenology and TRIFFID.•"Sellers" scales from leaf and soil to canopy reflectance

LAI α,ω

Reflectance wavebands

•Different instruments measure different band widths •JULES has broadband visible and NIR

Reflectance wavebands

Swansea University Prifysgol Abertawe

• Canopy reflectance is non-linear. Different bands will have different average reflectances.

• Can we use a band average or do we need to run the RT model multiple times per band?

• Variable illumination direction, hemispherical reflectance

- Angular effects are significant.
- Satellite geometry changes considerably during the year.

Eo data

- MODIS, 1999-now, 250m-1km, at least daily
 - Bands allow
- AVHRR, 1980-no
 - Atmospheric

JULES LAI

• Controlled by phenology with some inter-annual variation from TRIFFID

• Use just the phenology equations driven by soil moisture (either observed or from full JULES runs and met data.

JULES moisture stress

Comparison

Alternative schemes

- We'd like something prognostic.
- BETHY Knorr et al (2010).

 $r = \xi f + \frac{(1-f)}{2}$

$$\Lambda(t + \Delta t) = \Lambda_{lim} - (\Lambda_{lim} - \Lambda(t))e^{-r\Delta t}$$

 $f = \left| \Phi\left(\frac{T - T_{\phi}}{T_r}\right) \Phi\left(\frac{t_d - t_c}{t_r}\right) \right.$

$$\Lambda_{lim} = rac{\xi\Lambda_{max}f}{r}$$

$$T(t + \Delta t) = e^{\frac{-\Delta t}{\tau_m}}T(t) + T_{2m}(t)(1 - e^{\frac{-\Delta t}{\tau_m}})$$

$$\Lambda_{max}(t + \Delta t) = e^{\frac{-\Delta t}{\tau_s}} \Lambda_{max}(t) + \tilde{\Lambda}_{max}(t)(1 - e^{\frac{-\Delta t}{\tau_s}})$$

$$\Lambda_{max} =
u(ilde{\Lambda}, \Lambda_w)$$

 $W\Lambda$

 $\overline{\tilde{E}\tau_{u}}$

 $\Lambda_w =$

BETHY

BETHY

• Look at the two over Europe and Africa

Conclusions

Radiative transfer

- Broadband averages will do fine
- Need to correct for angles, either with a corrected or normalised EO product or a full BRDF model in JULES.
- NDVI will do for now
- Phenology controls reflectance away from snow.
 - JULES water phenology is inadequate
 BETHY seems a bit better
- To do;
 - Optimise BETHY phenology in mini-JULES, Europe and Africa

• Assess impact on growing season and fluxes

- Sellers is a 1D model
- Variable illumination direction, hemispherical reflectance

Model fitting

