

Anna Harper, Pierre Friedlingstein, Peter Cox, Andy Wiltshire, Chris Jones, Margriet Groenendijk, Eddy Robertson

Outline

- New PFTs
 - Introduction
 - Data
 - Global model results: Fluxes and Vegetation Dynamics
 - Evaluation of GPP
- Applications
 - 2010 Amazon drought

JULES Plant Functional Types

(from 5 to 9)

What's new?

- 9 plant functional types (but flexible # is possible)
- Trait-based physiology:
 - data-derived parameters N_{mass} (kg N kg leaf-1) and leaf mass per unit area (LMA: kg leaf m-2) replace N_{l0} and σ_L .

$$N_{area} = LMA * N_{mass}$$

V_{cmax} is calculated from regressions from global dataset, so a slope (v_{sl}) and intercept (v_{int}) replace n_{eff}.

$$V_{c \max, 25} = v_{sl} * N_{area} + v_{int}$$

$$V_{c \max, 25} = n_{eff} * N_{l0}$$

- Switch between old and new approach with I_trait_phys.
- Height-based competition so number of PFTs is flexible
 - Switch between old and new with I_height_dom.

New physiology and PFTs

V_{cmax} = maximum rate of carboxylation of Rubisco, related to Rubisco and export limited rates of photosynthesis in JULES

- Represents larger diversity of ecosystems.
- Updated V_{cmax} based on:
 - Observed leaf nitrogen, LMA, and V_{cmax} relationships
 - In progress: Optimizing V_{cmax,25} against Fluxnet observations (NEE, GPP, and LH).

Kattge et al. 2009: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. *Global Change Biology*.

Global vegetation with new PFTs

"TRENDY S3" style simulation:
Uses time-varying climate, CO2, and land use from 1860-2012

Vegetation coverage with new PFTs

Broadleaf evergreen trees (Temperate) Broadleaf evergreen trees (Tropical) ESA LCCS: Observed land cover, 2000 (Andy Hartley, Mike Sanderson)

- Tropics mostly good, boreal forest is lacking.
- The DGVM parameters are untuned, so it can likely get much better.

GPP with new PFTs

JULES3.2 Old PFTs GPP, 1982-2012 Global = 148 GtC/yr

60N 30N 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180

*Model tree ensemble, based on upscaled Fluxnet data: Jung *et al.* 2011, *JGR*

New PFTs - MTE GPP, 1982-2012

Biome-scale GPP

- Annual GPP is too high in most biomes according to MTE and Fluxnet individual sites.
- Fluxnet exceptions: It is too low in Tropical Savannah & Tundra.
- Seasonally: Spring GPP is too high in forests and grasslands.

Biome-scale LH

- JULES LH is close to the Jung et al. dataset – a little low in forests.
- Tropical savannah and tundra sites: JULES has low LH (GPP was also low).
- In ADJULES we will try to optimize both of these fluxes together with the net ecosystem exchange of carbon.

http://www.nasa.gov/multimedia/nasatv/index.html#.U7OuHo1dUfl

