Motivation for trait-based physiology

low nutrient concentration

- Deciduous and evergreen plants invest nutrients differently in their leaves.
- Huge amount of new data. The new parameters are based on 6169 species-specific observations of leaf N, 5920 of leaf thickness, 1757 of V_{cmax}

Application: 2010 Amazon drought

2.5 million km² affected1.6 PgC lost1-in-100 year event

3.2 million km² affected2.2 PgC lost1-in-100+ year event

Lewis et al. 2011

www.exeter.ac.uk

Soil moisture stress & roots

- Use plant available water (in kg m⁻²) instead of volumetric water content for calculating fsmc.
- Root depths from Zeng 2001
- Assume efficient tap roots can access lots of soil moisture despite low density (as long as water content is above the wilt pt):
 - Remove root-weighting of fsmc,
 - Remove the fsmc-weighting of water extraction

First observations of global and seasonal terrestrial chlorophyll fluorescence from space

J. Joiner¹, Y. Yoshida², A. P. Vasilkov², Y. Yoshida³, L. A. Corp⁴, and E. M. Middleton¹

New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity

Christian Frankenberg,¹ Joshua B. Fisher,¹ John Worden,¹ Grayson Badgley,¹ Sassan S. Saatchi,¹ Jung-Eun Lee,¹ Geoffrey C. Toon,¹ André Butz,² Martin Jung,³ Akihiko Kuze,⁴ and Tatsuya Yokota⁵

Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO_2 and chlorophyll fluorescence from GOSAT

Nicholas C. Parazoo,^{1,2} Kevin Bowman,^{1,2} Christian Frankenberg,¹ Jung-Eun Lee,¹ Joshua B. Fisher,¹ John Worden,¹ Dylan B. A. Jones,^{2,3} Joseph Berry,⁴ G. James Collatz,⁵ Ian T. Baker,⁶ Martin Jung,⁷ Junjie Liu,¹ Gregory Osterman,¹ Chris O'Dell,⁶ Athena Sparks,¹ Andre Butz,⁸ Sandrine Guerlet,⁹ Yukio Yoshida,¹⁰ Huilin Chen,^{11,12} and Christoph Gerbig⁷

Terrestrial Gross Primary Production Inferred From Satellite Fluorescence and Vegetation Models, Parazoo et al. 2014, GCB

Global: Prescribed vegetation cover

JULES3.2 Old PFTs GPP, 1982-2012 Global = 131 GtC/yr JULES3.2 New PFTs GPP, 1982-2012 Global = 165 GtC/yr

GPP & NPP

- Global NPP is closer to what we expect from observational constraints (50-60 GtC)
- NPP =64 GtC (Old PFTs)
- NPP= 52 GtC (New PFTs)
- But low carbon use efficiency (NPP/GPP) → R_{auto} is high.

