

Exploring the representation of PFTs in JULES Anna Harper, University of Exeter (with Peter Cox, Andy Wiltshire, Eddy Robertson, Chris Jones)

JULES general science meeting 18 December, 2012

JULES PFTs

- 5 currently: Broadleaf, Needle leaf, C3 grass, C4 grass, Shrubs
- 3 New: Split Broadleaf into Deciduous and Evergreen; same for needle leaf and shrubs
- Very preliminary work on new traits

How?

- Combination data analysis and parameter optimization.
- Leaf traits: Relate leaf nitrogen, life span, and mass/area to photosynthesis and respiration rates.
- Address soil moisture stress, root depths, and drought deciduous phenology for Tropical forests
- Parameter optimization for other photosynthetic properties.
- Adjust competition scheme to allow for generic # of PFTs.

Leaf Economics

- Quick return: short life span, high nutrient content, low mass/area, and high assimilation and respiration rates.
- Slow-return: long life span, low nutrient content, high mass/area, and low assimilation and respiration rates

Leaf Economics by PFT

• LMA -> Nmass -> Narea -> Vcmax

Slow-return

Source: Nmass from TRY dataset (Kattge et al. 2011); LMA from Wright et al. 2004

Vcmax and Photosynthesis

- Vcmax is maximum rate of carboxylation of Rubisco
- Calculated from maximum rate at 25C
- Affects Wc, We, and respiration.

$$V_{\rm cmax} = \frac{V_{\rm cmax25} f_{\rm T}(T_{\rm c})}{\left[1 + e^{0.3(T_{\rm c} - T_{\rm upp})}\right] \left[1 + e^{0.3(T_{\rm low} - T_{\rm c})}\right]}$$
(4)

1. Rubisco-limited rate (W_c)

$$W_{\rm c} = \begin{cases} V_{\rm cmax} \left(\frac{c_{\rm i} - \Gamma}{c_{\rm i} + K_{\rm c} (1 + O_{\rm a}/K_{\rm o})} \right) \text{ for } C_3 \text{ plants} \\ V_{\rm cmax} & \text{ for } C_4 \text{ plants} \end{cases}$$
(1)

2. Light-limited rate (W_1)

$$W_{\rm l} = \begin{cases} \alpha \left(1 - \omega\right) I_{\rm par} \left(\frac{c_{\rm i} - \Gamma}{c_{\rm i} + 2\Gamma}\right) \text{ for } C_3 \text{ plants} \\ \alpha \left(1 - \omega\right) I_{\rm par} & \text{ for } C_4 \text{ plants} \end{cases}$$
(2)

3. Rate of transport of photosynthetic products (in the case of C_3 plants) and PEPCarboxylase limitation (in the case of C_4 plants) (W_e)

$$W_{\rm e} = \begin{cases} 0.5 V_{\rm cmax} & \text{for } C_3 \text{ plants} \\ 2 \times 10^4 V_{\rm cmax} \frac{c_i}{P_*} \text{ for } C_4 \text{ plants} \end{cases}$$
(3)

From Nitrogen to Vcmax

- Linear relationship between N_area and Vcmax(25).
- Replace: $V_{\rm cmax25} = n_{\rm e}n_{\rm l}$

New leaf N: Increases assimilation and respiration

	EBT	DBT	ENT	DNT	C3	C4	ESh	Dsh	
N_area	2.02	1.69	3.26	2.20	1.13	0.90	2.28	1.68	kg/m2
Vcmax	57	55	65	46	53	43	67	54	umol/ m2/s
Vcmax in Lit.*	41-66	30-58	42-62	29-39	21-78	25	36-62	19-54	umol/ m2/s
current Vcmax	36.8		26.4		58.4	24	48		umol/ m2/s

*Kattge et al. 2009 (data) and the CLM model (Bonan et al. 2012)

Model Evaluation

- Run benchmarking suite at 10 sites
- We use can_rad_mod = 5 (multi-layer with sunlit and shaded leaves, diffuse/direct radiation), set diff_frac=0.4.
- Generally: GPP is improved but Respiration is worse (LH is also worse). This is just a starting point.

Reduce fd

Compare model and observations for timeseries #1: NEE

Modelled: NEE

Compare model and observations for timeseries #1: NEE

• site soil texture

Competition between PFTs

- Currently hard-wired for 5 PFTs: Trees>shrubs>grasses.
- Replace co-competition with pure height-dominance.
- Regardless of the plant type, the tallest plants win.
- Generic number of PFTs will allow for detailed regional analysis or added PFTs later.

$$c_{ij} = \frac{1}{1 + e^{20(h_i - h_j)/(h_i + h_j)}}$$

Conclusions

- Huge dataset provides insight into leaf investments into assimilation versus longevity.
- Mew Vcmax shows promise for photosynthesis but respiration is too high.
- Amazon broadleaf evergreen trees: assimilation is too low, and seasonal cycles are wrong. Maybe too much soil moisture stress, other controls on respiration, etc.
- Lots of testing, data analysis, and parameter optimization left!

Thank you

Why?

- Average values for broadleaf or shrub doesn't capture deciduous vs/ evergreen characteristics.
- If JULES GPP seems low, start with photosynthesis.

