Can we predict the vulnerability of Eucalypts to future drought?

Martin De Kauwe @mdekauwe82

16th Sept 2021

University of BRISTOL

Recent record-breaking droughts

Ukkola et al. (2020) GRL

Big dry (2017–2019)

Millennium drought (2000–2009)

Widespread drought-induced mortality

Observed mortality events

Allen et al. (2015) Ecosphere

Dieback could have profound consequences for:

- carbon balance
- land-atmosphere feedbacks
- community composition

Critically...key feedback missing in CMIP models

Q. Can we predict species vulnerability to drought with a model?

Problem 1: Models diverge when it is dry

2000-9 NBP sum: 0.15 to -0.22 Pg C (>10 TRENDY DGVMs)

Teckentrup et al. (2021) Biogeosci. *in review*

Problem 2: Evergreen broadleaf forest?

Problem 3: Future climate model forcing

CMIP6 models

"representative" GCMs + RCMs

GCM + RCM ... a *random* pixel

Experimental setup

Problem 1 \checkmark

• CABLE LSM + profit maximisation model

Problem 2 \checkmark

• Hydraulic traits (+ V_{cmax}) 15 eucalyptus species

Problem 3 \checkmark

- Use 5 km AWAP forcing, focus on SE Aus
- Experiments:
 - 2017-2019 drought (CTL)
 - -20% rain (ePPT)
 - -20% rain + double CO₂ (eCO₂ x ePPT)

Ψ_{min} = an indication of plant water status

i.e., the largest hydraulic tension each species experienced during drought

Ψ_{min} = an indication of plant water status

i.e., the largest tension each species experienced during drought

Drought pushed most species *beyond* the water potential inducing a 50% loss in hydraulic function (p50)

 Ψ_{min} = Largest tension species experienced during drought

ePPT impacted species with a southern (wetter) distribution & lower embolism resistance (higher p₅₀)

Hydraulic safety margin : $\Psi_{min} - \Psi_{50}$

eCO_2 effect on Ψ_{min}

Conclusions

- Identified **where** and **which** species were most at risk
- eCO_2 increased Ψ_{min} by ~27% (4%, 54%)
 - Are the effects of eCO₂ too optimistic?
 - no change in LAI (see Rifai et al. 2021 in review *Biogeosci*.)
- Should stomatal close happen before the onset of xylem embolism?
 - = wider HSM -> delay time to Ψ_{50}
 - role of Ψ_{crit} assumption in optimisation...?
- How would GW access change Ψ_{min} sensitivity?
 - See Mu et al. 2021 Earth Syst. Dyn. CABLE drought x HW

New Phytologist (2021) 231: 2118-2124

 Ψ_{xylem} at 90% g_s closure (-MPa)

Any questions?

Thanks to:

Manon Sabot, Belinda Medlyn, Patrick Meir, Lucas Cernusak, Andy Pitman, Brendan Choat, Jennifer Peters & Rachael Gallagher

