Using data assimilation to improve JULES soil moisture outputs and better understand soil physics

processes

E. Cooper,¹ E. Pinnington², R. Ellis¹, E. Blyth¹, S. Dadson¹, H. Cooper¹ ¹ UKCEH, Wallingford, UK ² NCEO, University of Reading, UK

email: elicoo@ceh.ac.uk

Data assimilation is.....

The art of combining information from models and observations in order to find out something we want to know

I'm going to tell you about

- Our observations
- Our model
- The experiments we ran using LaVEnDAR
- How this can help us unravel *some* information about infiltration excess runoff, leading to.....
- more questions!

Observations: COSMOS-UK

- Network of ~50 sites
- Measurements of soil moisture from Cosmic Ray Neutron Sensors over ~200m radius
- AND measurements of meteorological variables we can use to drive JULES (Joint UK Land Environment Simulator)

UK Centre for Ecology & Hydrology

Model: JULES soil physics

Driving JULES with local observed meteorology produces soil moisture estimates that can be compared with measured values

Cosby (ish) pedotransfer functions give params with physical meanings

$$b = \kappa_{1} + \kappa_{2} f_{clay} - \kappa_{3} f_{sand}$$

$$\theta_{s} = \kappa_{4} - \kappa_{5} f_{clay} - \kappa_{6} f_{sand}$$
How we have $\psi_{s} = 0.01 \times 10^{\circ} (\kappa_{7} - \kappa_{8} f_{clay} - \kappa_{9} f_{sand})$
How tig $K_{s} = 10^{\circ} (-\kappa_{10} - \kappa_{11} f_{clay} + \kappa_{12} f_{sand})$
How fas
$$\theta_{crit} = \theta_{s} \left(\frac{\psi_{s}}{3.364}\right)^{\frac{1}{b}}$$

$$\theta_{wilt} = \theta_{s} \left(\frac{\psi_{s}}{152.9}\right)^{\frac{1}{b}}$$
hcap = $(1 - \theta_{s})(2.376 \times 10^{6} f_{clay} + 2.133 \times 10^{6} f_{silt})$
hcon = $0.025^{\theta_{s}}(1.16^{f_{clay}(1\theta_{s})} \times 1.57^{f_{sand}(1-\theta_{s})} \times 1.57^{f_{silt}(1-\theta_{s})})$

We optimise the constants in red

UK Centre for Ecology & Hydrology

How wet can the soil get? How tightly is water held? How fast can water move?

Cosby (ish) pedotransfer functions give params with physical meanings

$$b = \kappa_{1} + \kappa_{2} f_{clay} - \kappa_{3} f_{sand}$$

$$\theta_{s} = \kappa_{4} - \kappa_{5} f_{clay} - \kappa_{6} f_{sand}$$
How wet can the soil get?
$$\psi_{s} = 0.01 \times 10^{\circ} (\kappa_{7} - \kappa_{8} f_{clay} - \kappa_{9} f_{sand})$$
How tightly is water held?
$$K_{s} = 10^{\circ} (-\kappa_{10} - \kappa_{11} f_{clay} + \kappa_{12} f_{sand})$$
How fast can water move?
$$\theta_{crit} = \theta_{s} \left(\frac{\psi_{s}}{3.364}\right)^{\frac{1}{b}}$$

$$\theta_{wilt} = \theta_{s} \left(\frac{\psi_{s}}{152.9}\right)^{\frac{1}{b}}$$

$$hcap = (1 - \theta_{s})(2.376 \times 10^{6} f_{clay} + 2.133 \times 10^{6} f_{silt})$$

$$hcon = 0.025^{\theta_{s}}(1.16^{f_{clay}(1\theta_{s})} \times 1.57^{f_{sand}(1-\theta_{s})} \times 1.57^{f_{silt}(1-\theta_{s})})$$

Two jobs of Ks (Ksat)

- How fast can water move?.... and.....
- What's the threshold for runoff?

Smaller Ks means:

- Water moves more slowly through soil
- Less infiltration (more runoff, more often)

To separate Ks' jobs, we add an extra equation to pedotransfer functions

$$b = \kappa_{1} + \kappa_{2} f_{clay} - \kappa_{3} f_{sand}$$

$$\theta_{s} = \kappa_{4} - \kappa_{5} f_{clay} - \kappa_{6} f_{sand}$$
How wet can the soil get?
$$\psi_{s} = 0.01 \times 10^{\circ} (\kappa_{7} - \kappa_{8} f_{clay} - \kappa_{9} f_{sand})$$
How tightly is water held?
$$K_{s} = 10^{\circ} (-\kappa_{10} - \kappa_{11} f_{clay} + \kappa_{12} f_{sand})$$
How fast can water move?
$$\theta_{crit} = \theta_{s} \left(\frac{\psi_{s}}{3.364}\right)^{\frac{1}{b}}$$

$$\theta_{wilt} = \theta_{s} \left(\frac{\psi_{s}}{152.9}\right)^{\frac{1}{b}}$$

$$hcap = (1 - \theta_{s})(2.376 \times 10^{6} f_{clay} + 2.133 \times 10^{6} f_{silt})$$

$$hcon = 0.025^{\theta_{s}}(1.16^{f_{clay}(1\theta_{s})} \times 1.57^{f_{sand}(1-\theta_{s})} \times 1.57^{f_{silt}(1-\theta_{s})})$$
max _inf = 10^{\circ} (-\kappa_{13} - \kappa_{14} f_{clay} + \kappa_{15} f_{sand})
When does runoff start?

Soil moisture results stay very similar

BICKL

CRICH

+ less runoff at all sites

UK Centre for Ecology & Hydrology

Runoff looks different

PTF params

Soil physics parameter values

with optimised max_inf

original

UK Centre for Ecology & Hydrology

Discussion:

Improved JULES soil moisture outputs

Introduced a new parameter to control infiltration excess runoff

- Still see improved JULES soil moisture
- Runoff reduced

New questions

- What should max_inf really look like?
 - River flow data?
 - Dependence on rain input timestep?
- Weather/climate forecasts?
- What does all this mean for process representation?

