

Forests in JULES: sinks, spaghetti and spots Chris Jones

Met Office Hadley Centre

JULES meeting, Edinburgh, 19-20 June 2013

Global carbon budgets and projections

• Importance of land carbon and forests

Drivers of changes

- Natural and managed forests
- Processes in JULES

Model evaluation

• Current and future

© Crown copyright Met Office

A large and persistent carbon sink in the world's forests

Fig. 1. Carbon sinks and sources (Pg C year⁻¹) in the world's forests. Colored bars in the down-facing direction represent C sinks, whereas bars in the upward-facing direction represent C sources. Light and dark purple, global

established forests (boreal, temperate, and intact tropical forests); light and dark green, tropical regrowth forests after anthropogenic disturbances: and light and dark brown, tropical gross deforestati Pan et al., 2011

Global Carbon Budget

Emissions to the atmosphere are balanced by the sinks Averaged sinks since 1959: 44% atmosphere, 28% land, 28% ocean

Met Office Hadley Centre

- Based on new RCP scenarios
 - CO2
 concentrations
 and land-use
 - CMIP5 models

 (incl. HadGEM2-ES) used to
 diagnose fossil
 fuel emissions to
 follow these
 trajectories

Compatible fossil fuel emissions

ESMs simulate land/ocean carbon fluxes

 Diagnose emissions required to follow RCP pathway

Met Office

CMIP5 land carbon cycle results

Land uptake – model disagreement

Forests

So, forests are:

- Big
- Important for past, present and future carbon budget
- Uncertain
 - Large model spread in their representation
- Sensitive to direct human forcing and environmental changes

• Complicated!

Drivers of land carbon changes

Met Office Hadley Centre C4MIP included

- CO2
- Climate

CMIP5 includes:

Land use change

Generally not included

- Land-use/management details
- Nitrogen (deposition)
- Fire
- [permafrost]

Drivers of land carbon changes

Aet Office adley Centre C4MIP included

- CO2
- Climate

CMIP5 includes:

Land use change

Generally not included

- Land-use/management details
- Nitrogen (deposition)
- Fire
- [permafrost]

Positive everywhere (enhanced carbon uptake)

- Land stronger than ocean
- Stronger over forests
- Large spread
- Evaluation data? Tropical FACE?

 $-\frac{1}{2}$

Mixed sign (mainly negative – reduced carbon uptake)

- Land stronger than ocean
- Stronger over forests
- Large spread high-latitudes disagree on sign
- Evaluation data?

Response to Nitrogen

Role of model evaluation

Evaluation becoming more important as models become more complex

- Need to evaluate stores and fluxes of carbon
- Lots of activity on former...
- ...but little on latter
 - Which is ultimately what we want to know
 - This is where models have huge spread/uncertainty
- Also need to evaluate dynamical response
 - Not just stationary state

Idealised disturbance/recovery in JULES – vegetation succession dynamics

And hence carbon fluxes

Compare with Houghton

	Harvard*		Hyytiala**		Manaus***	
	JULES	Houghton	JULES	Houghton	JULES	Houghton
C in undisturbed veg. (Mg C/ha)	95.71	135.00	84.30	90.00	61.59	200.00
C in crops (Mg C/ha)	2.22	5.00	2.07	5.00	4.04	5.00
C in undisturbed soil (Mg C/ha)	161.00	134.00	233.69	206.00	53.16	98.00
Minimum soil C (Mg C/ha)	148.75	101.00	216.77	155.00	45.97	74.00
Recovery time vegetation (years)	749	50	950	50	+954	40
Time to min. soil C (years)	5	30	6	50	2	20
Recovery time soil from min. (years)	+1039	40	+994	35	+1002	40

Key difference is in recovery times

Evaluation requirements

- Dataset development of fluxes
 - Site level, gridded
- Stores
 - Biomass and soil carbon
- Transient changes and sensitivities
 - Recovery from disturbance
 - FACE, manipulation experiments
- Innovative use of obs/models
 - More than just beauty-contest comparisons

Conclusions

Land surface models are key to future projections of carbon storage and emissions to meet targets

- Forests are key aspect
 - Managed and natural
 - Tropical, temperate, boreal
- Large model spread
 - Need to improve existing processes
 - Missing processes too N, fire, PFTs/dynamics
- Much better evaluation required
 - Beyond fluxes focus on stores required
 - Importance of successional dynamics