JULES meeting on forest processes 19-20 June 2013

JULES and CTESSEL: Representing carbon and energy fluxes in forests

Andrea Manrique Suñén

University of Reading Emily Black, Anne Verhoef Gianpaolo Balsamo and Souhail Boussetta

Outline

1. Model descriptions JULES vs CTESSEL

- Tiles
- Surface energy balance
- Photosynthesis
- 2. Model results for a forest site
 - Energy fluxes
 - Carbon fluxes

1.Model description: Tiles

Index	Vegetation type	H/L	$r_{ m s,min} \ (m sm^{-1})$	$c_{ m veg}$	$_{\rm (hPa^{-1})}^{g_{\rm D}}$	$a_{\mathbf{r}}$	$b_{ m r}$
1	Crops, mixed farming	L	100	0.90	0	5.558	2.614
2	Short grass	\mathbf{L}	100	0.85	0	10.739	2.608
3	Evergreen needleleaf trees	Н	250	0.90	0.03	6.706	2.175
4	Deciduous needleleaf trees	Η	250	0.90	0.03	7.066	1.953
5	Deciduous broadleaf trees	Н	175	0.90	0.03	5.990	1.955
6	Evergreen broadleaf trees	Н	240	0.99	0.03	7.344	1.303
7	Tall grass	\mathbf{L}	100	0.70	0	8.235	1.627
8	Desert	_	250	0	0	4.372	0.978
9	Tundra	\mathbf{L}	80	0.50	0	8.992	8.992
10	Irrigated crops	\mathbf{L}	180	0.90	0	5.558	2.614
11	Semidesert	\mathbf{L}	150	0.10	0	4.372	0.978
12	Ice caps and glaciers	_	_	_	_	_	_
13	Bogs and marshes	\mathbf{L}	240	0.60	0	7.344	1.303
14	Inland water	_	_	_	_	_	_
15	Ocean	_	_	_	_	_	_
16	Evergreen shrubs	\mathbf{L}	225	0.50	0	6.326	1.567
17	Deciduous shrubs	\mathbf{L}	225	0.50	0	6.326	1.567
18	Mixed forest/woodland	Н	250	0.90	0.03	4.453	1.631
19	Interrupted forest	Η	175	0.90	0.03	4.453	1.631
20	Water and land mixtures	\mathbf{L}	150	0.60	0	_	_

CTESSEL

High vegetation Low vegetation Snow on high vegetation Exposed snow Interception reservoir Bare ground Lake (LAKEHTESSEL)

Surface energy balance

$$\begin{aligned} \mathsf{JULES} \quad & \left[C_s \frac{\delta T_*}{\delta t} = (1 - \alpha) \, Sw \downarrow + \varepsilon \left(Lw \downarrow - \sigma T_*^4 \right) - H - L\varepsilon - G \right] \\ \mathsf{H} &= \frac{\rho c_p}{r_a} (T_* - T_A) \qquad G = \nu \left[\sigma \varepsilon \varepsilon_s T_*^4 - \sigma \varepsilon \varepsilon_s T_{s1}^4 + \frac{\rho c_p}{r_{a_{can}}} (T_* - T_{s1}) \right] + (1 - \nu) \lambda_{soil} (T_* - T_{s1}) \\ & \varepsilon = \frac{\rho}{r_a + r_s} (q_{sat}(T_*) - q_1) \qquad \text{Radiative} \qquad \text{Turbulent} \qquad \text{Conductive} \\ & \mathsf{CTESSEL} \quad \left[0 = (1 - f_{Rs}) (1 - \alpha) \, Sw \downarrow + \varepsilon \left(Lw \downarrow - \sigma T_{sk}^4 \right) + H + L\varepsilon - G \right] \\ & \mathsf{H} &= \frac{\rho c_p}{r_a} (T_A - \frac{gz}{c_L} - T_{sk}) \qquad G = A_{sk} (T_{sk} - T_{s1}) \\ & \varepsilon = \frac{\rho}{r_a + r_s} (q_{1-}q_{sat}(T_{sk})) \qquad \text{Skin conductivity} \end{aligned}$$

Photosynthesis

JULES

- A-g_s scheme
- Differentiates C₃ and C₄ photosynthesis
- Soil moisture stress applied to leaf level net assimilation

- T dependence with Q₁₀ functions
- Scaling from leaf level photosynthesis: 1.Big leaf approach
 2.Multilayer approach

CTESSEL

- A-g_s scheme
- Only one type
- Soil moisture stress applied to mesophyll conductance
 - Low vegetation formulation-High vegetation formulation
- T dependence with Q₁₀ functions
- Big leaf approach with differentiation between direct and diffuse radiation

Leaf level photosynthesis

JULES: Potential gross photosynthesis is obtained combining 3 regimes:

1. Rubisco-limited rate

$$Wc = \begin{cases} V_{cmax} \left(\frac{c_i - \Gamma}{c_i + K_c + \left(1 + \frac{O_a}{K_o} \right)} = \right) for \ C_3 \\ V_{cmax} for \ C_4 \end{cases}$$

2. Light-limited rate

$$W_{l} = \begin{cases} \alpha(1-\omega)I_{par}\left(\frac{c_{i}-\Gamma}{c_{i}+2\Gamma}\right) & for C_{3} \\ \alpha(1-\omega)I_{par} & for C_{4} \end{cases}$$

V_{cmax}: max rate of carboxylation of Rubisco c_i: Internal CO₂ partial pressure

- O_a :Partial pressure of O_2 Γ :Compensation point
- *I*: Compensation point K_c, K_o: Michelis-Menten parameters

α: Quantum efficiency of photosynthesis
 I_{par}: Incident photosyntetically active
 radiation
 ω: leaf scattering coefficient

<u>3. Rate of transport of photosynthetic products (C_3) and PEPCarboxylase limitation (C_4)</u>

$$We = \begin{cases} 0.5 V_{cmax} & for C_3 \\ 2 \times 10^4 V_{cmax} \left(\frac{c_i}{P_*}\right) & for C_4 \end{cases}$$

P_{*}: Surface air pressure

Vcmax, Γ , $K_{c_1}K_{o_2}$ depend on temperature according to Q_{10} fuctions

Leaf level photosynthesis

JULES

Soil moisture stress

$$A_l = \beta A_p$$

$$\beta = \begin{cases} 1 & \text{for } \theta > \theta_c \\ \frac{\theta - \theta_w}{\theta_c - \theta_w} & \text{for } \theta_w < \theta \le \theta_c \\ 0 & \text{for } \theta \le \theta_w \end{cases}$$

Canopy level photosynthesis

- 1. <u>Big leaf</u> (can_rad_mod=1)
 - Radiation is attenuated according to Beer's law
 - Photosynthetic rate integrated to LAI

$$A_c = \int_0^{L_c} A_l dL$$

- 2. <u>Multi-layer</u>(can_rad_mod=2)
 - Radiation uses 2-stream approach by Sellers (1985) allowing differentiation of direct and diffuse radiation.
- 3. <u>Multi-layer</u> (can_rad_mod=3)
 - Differentiation of shaded and sunlit leaves
- 4. <u>Multi-layer</u> (can_rad_mod=4)
 - Exponential profile of canopy nitrogen
 - Inhibition of leaf respiration in the light
- 5. <u>Multi-layer</u> (can_rad_mod=5)
 - Sunfleck penetration
 - Inhibition of leaf respiration in the light

Leaf level photosynthesis

CTESSEL

- 1. <u>Radiation limiting regime</u> $A_n = \varepsilon I_a R_d$ ε : Quantum efficiency
- 2. $\underline{CO_2}$ limiting regime

$$A_m = \frac{c_i - \Gamma}{g_m}$$

- C_i: Internal CO2 concentration
- **2**: Compensation point
- g_m: Mesophyll conductance

Leaf level photosynthesis

CTESSEL

Soil moisture stress from Calvet (2000) and Calvet et al (2004)

Driven by: •Mesophyll conductance •Maximum specific humidity deficit tolerated by the vegetation •Ratio c_s / c_i

Different formulation for high and low vegetation

Canopy level photosynthesis

CTESSEL

Radiation attenuation according to Beer's law with differentiation between diffuse and direct radiation

 $I_a(z) = I_0(1 - K(z))$

K(z) Extinction function

 $K(z) = \delta(\mu_s) K_{df}(z) + \left(1 - \delta(\mu_s) K_{dr}(z)\right)$

I_{0:} Radiation above the canopy

 $\begin{array}{l} \mathsf{K}_{\mathrm{df}} : \text{extinction coeff. for diffuse light} \\ \mathsf{K}_{\mathrm{dr}} : \text{extinction coeff. for direct light} \\ \delta : \text{ ratio of diffuse to total radiation at} \\ \text{the top of the canopy} \\ \mu_{\mathrm{s}} : \text{solar zenith angle} \end{array}$

$$A_{nI} = LAI \int_0^1 A_n d(z/h)$$

Respiration

JULES

Dark respiration

$$R_d = f_{dr} V_{cmax}$$

Plant respiration = maintenance + growth (nitrogen contents of stem, roots and leaves)

$$R_p = R_{pm} + R_{pg}$$

CTESSEL

Dark respiration (leaves only) $R_d = A_m/9$

Soil and structural biomass respiration: (T, snow cover, soil moisture, vegetation)

$$R_{soilstr} = R_0(25)Q10Ro^{\left(\frac{T_{soil}-25}{10}\right)}f_{sm}f_{sn}$$

Soil moisture attenuation
Snow cover attenuation

2. Model results

Hyytiälä forest (SMEAR II) (61°51'N, 24°17'E, 179 m a.s.l)

Vegetation: Scots pines (Needle leaf trees) Observations : FLUXNET

- Fluxes: eddy-covariance measurements
- Respiration estimated according to Reichstein (2005)
- NEE gapfilled with marginal distribution sampling (MDS)

Meteorological forcing: Half-hourly FLUXNET data

JULES

Big leaf approach (crm1) and multilayer approach (cmr3)
Phenology and TRIFFID off
Prescribed LAI

CTESSEL

without coupling A-g_s to evaporation
Prescribed LAI

Energy fluxes

Carbon fluxes

Diurnal GPP

20

Jan

GPP, Hyytiala 1998

Diurnal respiration

Diurnal NEE

NEE=Reco-GPP

GPP, NEE, Reco Accumulations 1998

Accumulated NEE-initial soil carbon

Soil respiration is very sensitive to initial soil carbon pool Values of soil carbon above 15 kg/m² will result in a positive NEE (net source of CO2)

Concluding remarks

1. Model comparison: JULES and CTESSEL

- Physical processes involving energy and water are very similar
- The carbon module presents more differences: treatment of vegetation, soil moisture stress

2. Model performance in boreal needle leaf site:

- Energy fluxes are similar, both overestimate latent heat
- The use of multilayer photosynthesis in JULES improves the diurnal cycle of GPP compared to the big leaf approach.
- CTESSEL is able to reproduce the diurnal cycle with the big leaf approach by differentiating between direct and diffuse radiation
- Soil respiration in JULES presents high sensitivity to initial soil carbon pool