So far: Strengthening the foundations for explicitly modelling microtopography in permafrost landscapes Noah Smith, Sarah Chadburn, Eleanor Burke, Rachael Turton & more...

To do: Representing thermokarst

Image by Benjamin Jones (@TundraTime)

Microtopography is widespread (in the permafrost)

Thermokarst lakes, by David Olefeldt

Treed palsa islands & fen in Saskatchewan, Canada, by Toby Spiribille

Ice-wedge polygons, Samoylov, by Boike et al. Palsa mire Iskoras, Norway

How do we model microtopography in JULES?

Making wetlands wet: further modifications

- Run-on
- Surface ponding
- A question over base flow (qbase)

Was it worth it?

(3/4)

Discontinuous permafrost: Palsa mire (Abiskomire)

Observed high

Observed Low

Single tile

n

Depth

High tile

Low tile

Best estimate with no qbase for Iskoras

Continuous permafrost: Ice wedge polygons (Samoylov)

Observed Low

Single tile

What made the difference to soil moisture?

Aside from gbase:

- Decreased runoff from low tile (and run-on from high tile)
- Differences in snowmelt
- High to low tile water flow
- Not unsaturated lateral fluxes

D. Lateral ingress

Effect on soil temperatures at 20cm depth

- Temperature difference between high and low tiles for July < observed for palsas (3.2 vs 5.5°C) with mean unchanged
- Little effect on polygons
- Mostly due to snow and (for palsa mires) the saturation of the mire following limining qbase

Effect on Methane (vs single tile)

- Little difference for polygons
- Can be around +50% for palsa mires
- These results do not include the effect of differing soil carbon profiles between tiles

	Samoylov	Kytalyk	Iskoras	Stordalen
M Low vs std. JULES	1.0	1.09	1.49	1.1
M Low vs High	0.98	1.09	1.67	1.24
NM Low vs std. JULES	1.01	1.08	1.1	1.09
NM Low vs High	1.0	1.1	1.21	1.2

Where to now?

(4/4)

Scaling up

- Sensitivity study shows the modelled July temperature splitting being at most 0.9 or 3°C larger than observed for palsa or polygon sites
- Uncertainty in individual parameters result in at most 1.5°C uncertainty
- For the palsa sites, there is a weak dependence of temperature on elevation for elevations above 0.5 m
- Initialise with climate envelope models?

Elevation vs summer soil temperature at 0.19 m.

Climate envelope for Palsas in North America -Richard E. Fewster et al (2020)

Abrubt thaw (thermokarst)

Dry tile Wetland tile Lake tile

Lateral thawing

Driven by temperature difference, excess ice, areal extent

Age

Lake ensemble

1. Initiation

Using lake bottom temperature, excess ice prevalence, soil type and area.

2. Growth

Talik growth as function of bottom temperature, lateral growth land dependant

growth or lateral drainage (function of areal extent)

^{3.} Drainage Either due to excessive talik

To do

- Landscape scale drainage & water table distribution
- Lateral thaw remote sensing to validate
- Lakes (FLake?)/ better ponds
- PFTs for arctic wetlands
- Peat integration (for recovery)
- Neater soil tiling

