

Dr Sue Page : Department of Geography

TROPICAL PEATLAND FIRES

Tropical peatlands: Location & extent

- Tropical peatlands ~12% global area
- Approx. 70% (~26 M ha) occurs in SE Asia, mainly in Indonesia
- Natural vegetation: peat swamp forest

West Papua 4 M ha

Tropical peat: Characteristics

- Tropical peat is formed from forest vegetation
- High wood content
- C content ~60%
- Peat thickness often exceeds 8 m (\rightarrow 20 m)
- Cover vast areas of coastal lowlands

Tropical peatlands & the carbon cycle

• C storage :

- Above-ground ~150 250 t C ha⁻¹
- ♦ Below-ground ~250 >10,000 t C ha⁻¹

- Current C store in tropical peatlands: 40 70+? Gt C
 - Between ~8-13% global peatland carbon pool (528 Gt C, Gorham 1991)
 - Up to 3% global soil carbon pool (2500 Gt C, Lal 2004)
- Current <u>potential</u> annual C sequestration: ~35 Mt yr^{-1**}
 - Equivalent to ~ 50% of that for all subarctic, boreal & temperate peatlands (66 Mt (Tg) yr⁻¹, Turunen et al. 2002)
 - BUT this is potential rather than <u>actual</u> carbon storage
 - Carbon sequestration function restricted by deforestation, drainage, agricultural conversion and fire.

** Assumes current carbon accumulation rate of 85 g C m⁻² yr⁻¹ (Page et al, 2004) and peatland extent of 42 M ha

Tropical peatlands: from carbon sink to source

DRIVING FORCES

Logging (legal/illegal) Deforestation Drainage Plantation and agricultural enterprises Poor forest and land management

Driving forces : Deforestation

2002

2005

Peat swamp forests: Deforestation rate 2.4% yr⁻¹

Driving forces : Land conversion & drainage

Large-scale agricultural and plantation projects

~ 7 million hectares of peatland : deforested and drained

Driving forces : Fire

• Regular fires over last decade – 1997/98, 2002, 2003, 2004, 2005, 2006

• An annual event?

Annual fire hotspot data for Borneo 1997 to 2006 (Langner & Siegert, unpublished)

Driving forces : Fire

2006 fire hotspot data superimposed on distribution of peat (Langner & Siegert, unpublished)

Tropical peatlands and fire: Emissions

C emissions from Indonesian peatland fires during 1997/98:

- ♦ Range 0.81 2.57 Gt C (Page et al. 2002)
 - Accounting for 55-95% of C emissions from all fires during that period in SE Asia (Schimel & Baker 2002; van der Werf et al. 2004, 2006).

Equivalent to 18 to 57 years of successful Kyoto implementation.

Drainage clearly increases risk of fire. In study area:

51% of drained peatland burnt compared with 19% of the undrained peatland.

Tropical peatlands and fire

- Emissions caused by fires remain a large uncertainty in projections of C emissions from tropical peatlands.
- Problems of estimating emissions from hot-spots:
 - insufficient testing of relationship between hot spots and peat fire occurrence and severity; peat fires smoulder – are they detected?
 - problems of mapping hot spots onto peatland areas;
 - different fuel loads/emission factors for peat vs non-peat fires.

• Need detailed field assessments to confirm:

- accuracy of burnt area estimates;
- relationship between hot spots and fire occurrence / severity;
- relationship between drainage depth, soil moisture and burn depth;
- accurate values for 2^o vegetation biomass combustion;
- impact of post-fire conditions on fire risk / return period.

Tropical peatlands and fire: Study focus

Focus on Block C 450,000 ha

Former Mega Rice Project area

- ~1,000,000 ha
- Mainly peatland
- •Carbon store c. 1-2 Gt
- •1995-97 attempted agricultural conversion & extensive drainage

LAND COVER CHANGE 1973-2003

Landsat MSS Landsat TM Landsat ETM Aster/TERRA DMC (Disaster Monitoring Constellation)

Land cover change

	PRIMARY FOREST COVER (%) IN BLOCK C (450 000 ha)					
FOREST TYPE	1973	1991	1994	1997	2000	2003
Mixed peat swamp forest	56.5	48.6	41.1	40.0	16.0	12.8
Low pole peat swamp forest	3.1	3.1	3.1	3.1	0.7	0.3
Total peat swamp forest	59.6	51.7	44.2	43.2	16.7	13.1
Loss rate in relation to initial 1973		13.3	25.8	27.6	72.0	78.1
Heath forest	2.1	3.2	3.2	3.2	3.2	N/A
Freshwater swamp forest	8.7	8.4	7.9	7.8	6.0	N/A
Manarova forast						
	2.1	2.1	2.1	2.1	2.1	N/A

Fire history

Time period	El Niño events	Area of fire scars (ha)	% of block			
before 1973	1972/73	31,109	6.9			
1974-1990	1982/83	35,605	7.9			
1991/92	1991/92	33,586	7.5			
1994-1996		4,629	1.0	TPSF	non-forest	
1997	1997/98	150,486	33.5	84.4	5.2	
2002	2002/03	106,481	23.7	68.3	31.7	
2003/04		64,180	14.3			
2005		55,768	12.4 📷	Web Fire Mapper: Southeast Asia		
2006	2006	?	? 😿	EL ME	NIGY .	El .

Fire frequency

Fire occurrence

Repeat fires promote growth of secondary vegetation dominated by ferns -> dry fuel load and increased risk of fire.

Hydrology and fire risk

Annual variation in ground water levels (Wosten, Clymans, Page in press)

Ground Water Level [1999] relatively to soil surface [cm] Block C

Wet year (1999) 2% < -40cm

Average year (2003) 18% Ground Water Level [2003] relatively to soil surface [cm]

Ground Water Level [1997] relatively to soil surface [cm]

Author: Eva Clymans, February 2006 Results of SIMGRO Modelling calculated with precipitation data from 1997 N

Groundwater level < -40cm ⇒ high risk of fire

Dry year (1997) 40% University of Leicester DEPARTMENT OF GEOGRAPHY

Estimating C losses from peatland fires: Block C MRP : 1973-2005 (450,000 ha)

Year	Area burnt peatland (ha)	C loss (Mt)**	Cumulative C loss (Mt)
before 1973	31,109	7.09	7.09
1974-1990	35,605	8.12	15.21
1991-96	38,215	8.71	23.92
1997	150,486	34.31	58.23
2002	106,481	24.28	82.51
2003-04	64,180	14.63	97.14
2005	55,768	12.72	110
2006	??	20 ??	130 ??

** based on combustion of 0.40 m peat, with bulk density 0.1 g cm⁻³ & C content 57% (excludes C lost in combustion of above-ground biomass)

Drainage

Conclusions

- Peatland fires will likely increase as more damaged, less fire-resistant vegetation covers the landscape & peatland drainage continues.
- Some fires are the unintended consequence of current land-use practices (..... although many are intended so can be controlled?).
- Peatland fires are currently main source of biomass combustion emissions in SE Asia.
- Peat fire emissions currently exceed those from slower peat decomposition.
- BUT this does not mean the problem can be solved by "fire fighting".
- Peatland fires are *promoted* by deforestation and forest degradation linked to peatland drainage.
- They can only be stopped if these root causes are dealt with.
- Stopping peat fires but not peatland drainage merely means it will take a longer time for the carbon to be released to the atmosphere !!
- Longer term consequences for & of climate change ???

Tropical peatlands & the carbon cycle : from sink to source

Current (2005): $355-874 \text{ Mt CO}_2 \text{ yr}^{-1}$ (100–240 Mt C yr⁻¹) Projected (2015-2035): $557-981 \text{ Mt CO}_2 \text{ yr}^{-1}$ (150-270 Mt C yr⁻¹)

Modelling C emissions from tropical peatland drainage – fire emissions NOT included

Current global emissions from fossil fuels ~ 25,000 Mt CO₂ yr⁻¹ (in comparison, tropical peat drainage emissions equivalent to 1.4-3.5% of fossil fuel emissions)

Estimating C emissions from tropical peatland fires: landscape-scale approach

- Block C peat fire emissions: 9.6 Mt C yr⁻¹ (average annual emission 1997-2005)
- Block C peat drainage emissions (based on 0.25 t C ha⁻¹ yr⁻¹ emission per cm drainage depth (Hooijer et al. 2006; peatland area 337,632 ha)):
 - Drainage depth 0.50 m: 4.22 Mt C yr⁻¹
 - Drainage depth 1.00 m: 8.44 Mt C yr⁻¹
- Total emissions for Block C 1997-2005:
 - ◆ Fires: 86 Mt + Drainage: 38-76 Mt = 124-162 Mt C

