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Abstract/Summary

• We are improving the terrestrial carbon 
cycle parameters in JULES by tuning 
them so we can simulate flux tower 
measurements.

• The tuning method is variational data 
assimilation.

• The usual formulation of Var is not 
applicable.

• A different weighting of prior and 
observation terms is needed.
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Data assimilation: states or 
parameters?

• The state of a system is the set of relevant or 
interesting evolving variables. E.g.: 

• the CO2 concentration field in the atmosphere;

• the salinity field in the ocean; 

• the velocity field in either; 

• the moisture content in soil layers.

• Parameters are the fixed numbers in a model, 
that control the state. E.g.: 

• ksat in soil; 

• q10 in soil or leaves.
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variational?
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Data assimilation: sequential 
or variational?

• Sequential, e.g. the Kalman filter.
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Data assimilation: sequential 
or variational?

• Variational, e.g. 4D-Var.
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Data assimilation: sequential 
or variational?

• State vectors:

• Sequential DA naturally accommodates model error;

• Sequential DA does not naturally accommodate nonlinearity.

• Var does not naturally accommodate model error;

• Var naturally accommodates nonlinearity.

• Parameters:

• Parameters are fixed, but sequential DA allows them to 
change;

• Parameter-Var has fixed parameters;

• JULES is more suited to variational parameter estimation 
than sequential estimation.
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Data assimilation: sequential 
or variational?

For parameter 
estimation in 
JULES, Var 

beats 
sequential
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Var: the cost function.
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Var: the cost function.
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Var for parameter estimation.

• Q. Can we really do this?

• A1. State estimation theory [Jazwinski (1970)] 
can be manipulated to give a (nearly) identical 
parameter estimation theory.

• A2. “It just works”, i.e. it is rational even if it is 
not optimal.

• A3. Equivalent least-squares problem.

A. Jazwinski, “Stochastic Processes and Filtering Theory” Chapter 5 
(1970)
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© Crown copyright   Met Office

Parameter estimation for 
JULES

• We want to optimise the terrestrial carbon 
cycle.

• Q. Which set of parameters do we work with?

• A1. Start with a set already studied [Booth 
(2009)];

• A2. Choose a few more;

• A3. Sensitivity analysis to find which subset had 
a strong effect on annual carbon pools and the 
timing and amplitude of seasonality.

[B. Booth et al., Increased importance of terrestrial carbon cycle 
feedbacks under global warming. Submitted to Nature (2009).]



© Crown copyright   Met Office

Parameter estimation for 
JULES

Tlow and Tupp Maximum and minimum temperature constraints on 

photosynthesis. These were covaried. [°C] 

dQcrit Critical humidity deficit for photosynthesis. [kg water / kg air] 

f0 Controller of stomatal carbon dioxide concentration. [unitless] 

LAImin Minimum leaf area for vegetation areal expansion. [unitless] 

nl0 Top leaf nitrogen concentration . [kg N / kg C] 

q10,leaf Base for leaves in q10 model of respiration. [unitless] 

q10,soil Base for soil in q10 model of respiration. [unitless] 

α Soil albedo. [unitless] 

ggrow Rate of leaf growth. [/360 days] 

groot Turnover rate for root biomass. [/360 days] 

gwood Turnover rate for woody biomass. [/360 days] 
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Parameter estimation for 
JULES

• p=(Tlow, dQcrit, f0, nl0, q10.leaf, q10.soil)

• Find p that minimises J(p) by the Nelder-Mead 
method over the 6-dimensional parameter 
space.

• Target functions: daily Reco, GPP and NEE over 
as many years as are available.

• (Note: NEE = -NEP)
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Parameter estimation for 
JULES

• Hyytiala: “standard” parameters
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Parameter estimation for 
JULES

• Hyytiala: “best” parameters
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Parameter estimation for 
JULES

• Hyytiala: “best” parameters …but …

• … the cost is completely dominated by the 
observations.
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Weighting for the correlated problem.
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Weighting for the correlated 
problem.

• Var derivation assumes the system is 1st-order 
Markov: xk+1 = f(xk) + ek .

• OK for NWP and other autonomous systems.

• Not correct for systems driven by serially-
correlated phenomena (e.g. the land surface is 
driven by weather and radiation).

• Correlated inputs → correlated outputs, 
containing less information.

• Therefore we should give less weight to 
observation terms.

• But how much?
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Weighting for the correlated 
problem.

• Numerical experiment: weight prior and obs 
terms by chosen factors:

• R.fac is small.

• Only the ratio is important.
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Weighting for the correlated 
problem.

• What happens when we vary the weights?
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Weighting for the correlated 
problem.

• What happens when we vary the weights?
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Weighting for the correlated 
problem.

• Changes in the relative weights cause changes 
in the results (of course!).

• The changes are systematic (good!)

• What are the best weights? (Difficult problem!)
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Weighting for the correlated 
problem.

• Michalak et al., Maximum likelihood estimation 
of covariance parameters for Bayesian 
atmospheric trace gas surface flux inversions. 
JGR 110, D24107 (2005).

• NWP experience of correlated obs errors.

• Least-squares parameter estimation for time 
series.
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Results.
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Results

• Hyytiala, Finland: NL forest
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Results

• Vaira Ranch, CA: grazed C3 grass
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Results

• Fort Peck, Montana: mixed C3/C4 grass
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What next?

• Resolve the weighting problem.

• Gather more flux tower data over different 
PFTs.

• Take advantage of “JULES-TAF” (discussed by 
Tim Jupp in this session) for faster 
convergence.

• Examine the response of large-area carbon 
cycles (e.g. Europe or World).
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Questions and answers
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Abstract/Summary

• We are improving the terrestrial carbon 
cycle parameters in JULES by tuning 
them so we can simulate flux tower 
measurements.

• The tuning method is variational data 
assimilation.

• The usual formulation of Var is not 
applicable.

• A different weighting of prior and 
observation terms is needed.
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Spare Slides
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f0 and dqcrit

• ci is the internal partial pressure of CO2

• ca is the external partial pressure of CO2

• Γ is the photorespiration compensation point

• F0 is a tuning parameter

• D* is the humidity deficit at the leaf’s surface

• Dc is a tuning parameter


