CHESS: Climate, Hydrology and Ecology research Support System

Eleanor Blyth, Alberto Martinez and Emma Robinson

1961 to 2015, 1km, daily CEH LandCover2000 HWSD soils Disaggregated MORECS data CEH GEAR rainfall

CHESS met data: Robinson et al, 2017

Calculation of Interception

Spatial distribution of intensity of rainfall.

$$f(P) = \left(\frac{\mu}{P}\right) \exp\left(\frac{-\mu P_i}{P}\right)$$

where *P* (kg m⁻² s⁻¹) is the area-average rainfall rate, P_i (kg m⁻² s⁻¹) is the rainfall rate over a small area and μ is the fraction of the grid box area over which the rain is assumed to fall. In CHESS, this is set as 1.

Throughfall (T_f) is then calculated:

$$T_{f} = P\left(1 - \frac{c}{c_{m}}\right) exp\left(-\frac{\varepsilon c_{m}}{P\Delta t}\right) + P\frac{c}{c_{m}}$$

where C (mm) is the amount of rainfall stored on the leaves, C_m (mm) is the maximum capacity which depends on the leaf area index of the vegetation and ε is a tuning factor.

Fraction (F) is assumed the fraction that is wet and used to calculate the evaporation.

$$F = \frac{C}{C_m}$$

Rest of Hydrology

Runoff generation: PDM (Pareto Distribution):

 $f_{sat} = 1 - \left(1 - \frac{\theta}{\theta_s}\right)^{B/B+1}$

Soil Moisture redistribution: Darcy Richards Equation: $W = k \left(\frac{d\psi}{dz} + 1\right)$

With van Genuchten (1980) formulations:

$$\begin{pmatrix} \frac{\theta}{\theta_s} \end{pmatrix} = \frac{1}{\left[1 + (\alpha \psi)^{\left(\frac{1}{1-m}\right)}\right]^m} k = k_s \left(\frac{\theta}{\theta_s}\right)^{0.5} \left[1 - \left(1 - \left(\frac{\theta}{\theta_s}\right)^{1/m}\right)^m\right]^2$$

Where ψ_s (m) is the suction at saturation and k_s (kg m⁻² s⁻¹) is the conductivity at saturation while α and m are model parameters.

Questions to be asked.....

Precipitation increase: 2.95 mm per year Runoff increase: 1.6 mm per year PET increase: 0.7 to 0.77 mm per year

- Is the evaporation of GB and the regions increasing or decreasing?
- Which components of the evaporation are contributing to the trend?
- What meteorological changes are driving these changes?
- What impact does the increase in atmospheric CO₂ have on the trend?

Long term downward trend in Evapotranspiration at Alice Holt.

Pers. Comm. (Matt Wilkinson) – not to be trusted......

EVALUATION

Van den Hoof et al (2013): forest interception to range from 13% to 25% **of the total evaporation** while for grasses it is more like 10%.

Nisbet (2005) forest interception about 20% for broadleaf trees and 35% for needleleaf **of rainfall**

Both about right.....

Overall overestimate by about 10%

Zooming in

Teuling et al, 2009. A regional perspective on trends in continental evaporation. GRL

Correlation of annual Evapotranspiration with Precipitation and ShortWave Radiation

ş

Correlation with Precipitation (P) and Short Wave Radiation (SW)

■GB ■Scotland ■Wales ■England ■ELLEng

R	P v E _{tot}	S _w v E _{tot}	Pvl	S _w v I	P v T _r	S _w v T _r	P v B _s	S _w v B _s
GB	0.66	0.42	0.86	0.09	0.11	0.74	0.48	0.44
Scotland	0.65	0.50	0.80	-0.01	0.09	0.81	0.51	0.44
Wales	0.47	0.45	0.83	-0.15	-0.20	0.84	0.27	0.37
England	0.58	0.28	0.84	0.24	0.12	0.56	0.31	0.42
English Lowlands	0.64	0.19	0.82	0.28	0.35	0.36	0.25	0.46

Components for regions

🗖 esoil 📕 eveg 🔳 ecan

Conclusions (Blyth et al, 2018, being submitted)....

- 1. Modelled evapotranspiration increases (0.9 mm per year) are higher than increases in PET (0.7 to 0.77 mm per year) and leave no trend in soil moisture.
- 2. There is a large contribution of interception to the overall evaporation in GB (30%). This is due to the combination of wet and windy areas (West Scotland) with evergreen needle leaf trees which have a high interception capacity.
- 3. The evaporation from a wet forest often exceeds the PET, drawing down energy in the form of negative sensible heat (i.e. cooling the air) to drive it.
- 4. Interception fraction scales with precipitation rather than energy. This confirms the summary of observations presented by Nisbet (2005).
- 5. Over the last 5 decades, precipitation has increased faster (2.96 mm yr⁻¹) than the PET (0.77 mm yr⁻¹). This increase in precipitation, combined with the high interception rates in GB explains why the trend in evapotranspiration is higher than the trend in PET.
- 6. The effect in the model of an increase in CO2 was to reduce the upward trend in evapotranspiration (via a reduction in transpiration) by a factor of 38%. There was a smaller impact on the runoff with a 5% increase in overall runoff.