

Using JULES to simulate infiltration and surface runoff in situations of intense rainfall

JULES Conference 27th of June 2017

Chloé Largeron¹

supervised by H. Cloke^{1,2}, A. Verhoef¹

- [1] Department of Geography & Environmental Science, University of Reading
- [2] Department of Meteorology, University of Reading

Overview of talk:

- 1. Infiltration theory
- 2. Methods:
 - 1. Methods of infiltration used in Land surface models
 - 2. New scheme of infiltration in JULES
- 3. Results: Comparison of observed and modelled river flow for a UK catchment (Ure)
- 4. Conclusions and Outlooks

Schematic of infiltration processes:

Actual infiltration depends on value of T_F and maximum infiltration I_{max}

If $T_F > I_{max}$: Surface runoff = $T_F - I_{max}$

If $T_F < I_{max}$: Infiltration = T_F

Schematic of infiltration processes:

Actual infiltration depends on value of T_F and maximum infiltration I_{max}

If $T_F > I_{max}$: Surface runoff = $T_F - I_{max}$

If $T_F < I_{max}$: Infiltration = T_F

Standard version of JULES: $I_{max} = \beta K_{sat}$

 $20 \text{ mm/d} < K_{sat} = f(soil) < 1200 \text{ mm/d}$

PFT Number	default value
Broadleaf tree	4.00
Needleleaf tree	4.00
C3 grass	2.00
C4 grass	2.00
Shrubs	2.00
Urban	0.10
Open water	0.00
Bare soil	0.50
Ice	0.00

Infiltration scheme used in Land Surface models:

Model and methods

Model	Institution	Reference	Maximum infiltration method	Actual infiltration method
JULES	Met Office	(Best et al., 2011)	Fixed Imax rate	SWB
VIC	Princeton Uni.	(Gao et al., 2010)	VIC scheme	SWB
ISBA	Meteo-France	(Liang et al., 1996) (Decharme and Douville, 2006) (Noilhan and Mahfouf, 1996)	VIC scheme	SWB
ORCHIDEE	IPSL	(Krinner et al., 2005)	VIC $I_{max} = f(\theta)$	probability distrib.
CLM	NCAR	(Oleson et al., 2010)	VIC $I_{max} = f(texture, \theta)$	SWB
HTESSEL	ECMWF	(Balsamo et al., 2009)	VIC $I_{max} = f(\theta, \text{orog.})$	SWB
NOAH	NCEP	(Schaake et al., 1996)	VIC $I_{max} = f(\theta, K_{sat})$	SWB
CLASS	Canada	(Verseghy, 1991)	Green-Ampt	Green-Ampt $I=f(K,\Psi)$
CABLE	Australia	(Haverd and Cuntz, 2010)	No I_{max}	SWB
MATSIRO	Japan	(Takata et al., 2003)	No I_{max}	SWB
G2G	CEH	(Bell et al., 2007, 2009)	VIC $I_{max}=f(\theta)$	probability distrib.

Adaptation from the work of H.Ashton

VIC: Variable Infiltration Capacity

SWB: Surface Water Balance

$$I = \sum_{i=1}^{nPFT} (T_{fall} + M - S_{\text{runoff}})$$

Variable maximum infiltration schemes:

Model and methods

Standard Scheme

$$I_{max} = \beta K_{sat}$$

New scheme of infiltration
$$I_{max}=eta K_{top}$$

Model and methods

Standard Scheme

$$I_{max} = \beta K_{sat}$$

(CTL)

New scheme of infiltration $I_{max}=eta K_{ton}$

$$I_{max} = \beta K_{top}$$

(β K)

Scheme PDM activated

(PDM)

Scheme PDM deactivated

(NO PDM)

Observation (National River Flow Archive)

PDM scheme:

- Calculation of the fraction of the grid which is saturated F_{sat}
- Generate surface runoff from saturation excess

$$F_{sat} = 1 - \left(\frac{S - S_0}{S_{max} - S_0}\right)^{\frac{b}{b+1}}$$

Model and methods

Standard Scheme

$$I_{max} = \beta K_{sat}$$
 (CTL)

- New scheme of infiltration $I_{max} = \beta K_{ton}$ (β K)
- Scheme PDM activated
- Scheme PDM deactivated

(PDM)

(NO PDM)

Observation (National River Flow Archive)

Evaluation of the model: Kling-Gupta Efficiency

$$KGE = 1 - \sqrt{(\frac{Cov_{sim,obs}}{\sigma_{simu}\sigma_{obs}} - 1)^2 + (\frac{\sigma_{sim}}{\sigma_{obs}} - 1)^2 + (\frac{\mu_{sim}}{\mu_{obs}} - 1)^2}$$

$$\rho$$
 a b

Standard Scheme

$$I_{max} = \beta K_{sat}$$

New scheme of infiltration $I_{max}=eta K_{top}$

$$I_{max} = \beta K_{top}$$

(PDM)

- Scheme PDM activated
- Scheme PDM deactivated (NO PDM)
- Observation (National River Flow Archive)

Ure catchment area: 510 km² 10 years period: 1991-2000

meteorological forcing used: CHESS (CEH)

- 1 km² spatial resolution
- daily precipitation
- using RFM for each simulation

Res. Note UKEP A. Martinez

New scheme (scheme bK) Standard scheme (CTL)

PDM activated (PDM)

Results

0000

New scheme (scheme bK) Standard scheme (CTL)

PDM deactivated (NO PDM)

$$\rho = 0.76$$
 $\rho = 0.46$
 $b = 1.28$
 $b = 0.63$
 $a = 1.26$
 $a = 0.55$

$$KGE = 1 - \sqrt{(\frac{Cov_{sim,obs}}{\sigma_{simu}\sigma_{obs}} - 1)^2 + (\frac{\sigma_{sim}}{\sigma_{obs}} - 1)^2 + (\frac{\mu_{sim}}{\mu_{obs}} - 1)^2}$$

1991 - 2000

Comparison of river flow in a small catchment:

New scheme (scheme bK) Standard scheme (CTL)

PDM deactivated (NO PDM)

		000 1100	500	0411 101	, iviai	, (p. 1	·iay	Juli	oui 710	ag cop	
	1.0									CTL sche	me bK
	0.8								-	— NO PDN	PDM //
	9.0										
KGE	0.4										
	0.2										
	0.0										_
		0.0	0	.2	0.4	ŀ		0.6		0.8	
				Perce	entile	river	·flov	N			

$\rho = 0.76$	$\rho = 0.46$
b = 1.28	b = 0.63
a = 1.26	a = 0.55

$$KGE = 1 - \sqrt{(\frac{Cov_{sim,obs}}{\sigma_{simu}\sigma_{obs}} - 1)^2 + (\frac{\sigma_{sim}}{\sigma_{obs}} - 1)^2 + (\frac{\mu_{sim}}{\mu_{obs}} - 1)^2}$$

$$\rho \qquad \qquad \text{a} \qquad \qquad \text{b}$$

Comparison of surface runoff in a small catchment:

New scheme (scheme bK) Standard scheme (CTL)

PDM deactivated (NO PDM)

PDM activated (PDM)

Surface runoff Oct. 1994–1995 Peak river flow period

80

Precipitation (mm/d)

Oct Nov Dec

Jan Feb Mar Apr May Jun

Results

Srunoff: ρ (bk NO PDM, bK PDM) = 0.9999 ρ (bk PDM, CTL PDM) = 0.967

Riverflow: ρ (bk NO PDM, bK PDM) = 0.999 ρ (bk PDM, CTL PDM) = 0.92

Jul Aug Sep

Conclusions:

- 1. Land surface models used mainly: max VIC and infiltration is based on SWB
- 2. The scheme $I_{max} = \beta K$:
 - i. Enhance an increase of the surface runoff
 - ii. Improve the river flow in a small catchment when high precipitation occurs
 - iii. Overestimate the mean river flow (parameter b) and the variability (parameter a)

Outlooks:

- 1. River flow of a UK catchment:
 - Decrease the overestimation of the variation of river flow with reducing the parameter $\boldsymbol{\beta}$
 - Working with other catchment
- 2. Study the modelled river flow with comparison of observed flash flood events
- Study the impact on the uncertainty of modelled precipitation on the resulting surface runoff and river flow with the new/old scheme.

Variable maximum infiltration schemes:

scheme 0:
$$I_{max} = \beta K_{sat}$$
 JULES

scheme 1:
$$I_{max} = \beta (W_{sat} - W)/\Delta t$$
 A. Mueller (kg/m^2)

scheme 2:
$$I_{max} = \beta (W_{sat}^{top} - W^{top})/\Delta t$$

$$\text{scheme 3:} \quad I_{max} = (W_{sat} - W) + max \bigg(0, W_{sat} \bigg[(1 - \frac{W}{W_{sat}})^{\frac{1}{b+1}} - (\frac{T+M}{(b+1)W_{sat}}) \bigg]^{b+1} \bigg) \quad \text{CHTESSEL}$$

scheme 4:
$$I_{max} = \beta K_{top}$$

scheme 5:
$$I_{max} = K_{top} \frac{d\psi}{dz}$$

New scheme (scheme bK) Standard scheme (CTL)

PDM deactivated (NO PDM)

PDM activated (PDM)

Improvement

1991 - 2000

$KGE_{bk} = 0.547$	$KGE_{std} = 0.212$
$\rho = 0.76$	$\rho = 0.46$
b = 1.28	b = 0.63
1.26	0.55

$$\rho = 0.76$$
 $\rho = 0.46$
 $b = 1.28$
 $a = 1.26$
 $\rho = 0.46$
 $a = 0.63$
 $a = 0.55$

 $KGE_{hk} = 0.612$ $KGE_{std} = 0.247$

$$KGE_{bk} = 0.546$$
 $KGE_{std} = 0.549$

$$\rho = 0.76 \qquad \rho = 0.77 \\
b = 1.28 \qquad b = 0.76 \\
a = 1.26 \qquad a = 0.69$$

Oct. 1994-1995 Peak river flow period

$$\rho = 0.68$$
 $\rho = 0.48$
 $b = 1.20$ $b = 0.67$
 $a = 1.12$ $a = 0.57$

$$KGE_{bk} = 0.607$$
 $KGE_{std} = 0.523$
 $\rho = 0.68$ $\rho = 0.70$
 $b = 1.21$ $b = 0.78$
 $a = 1.12$ $a = 0.69$

$$KGE = 1 - \sqrt{(\frac{Cov_{sim,obs}}{\sigma_{simu}\sigma_{obs}} - 1)^2 + (\frac{\sigma_{sim}}{\sigma_{obs}} - 1)^2 + (\frac{\mu_{sim}}{\mu_{obs}} - 1)^2}$$

Comparison of surface runoff in a small catchment:

Spatial frequency of surface runoff over all grid cells (515)

New scheme (scheme bK) Standard scheme (CTL)

PDM activated (PDM)

Srunoff: ρ (bk NO PDM, bK PDM) = 0.9999 ρ (bk PDM, CTL PDM) = 0.967

Riverflow: ρ (bk NO PDM, bK PDM) = 0.999 ρ (bk PDM, CTL PDM) = 0.92

PDM activated (PDM)

Spatial frequency of surface runoff over all grid cells (515)

Results

000000