Evaluating GPP at regional and global scales

D. Slevin¹, S.F.B. Tett¹, J.-F. Exbrayat^{1,2}, A.A. Bloom^{1,2,3} and M. Williams^{1,2}.

¹School of GeoSciences, The University of Edinburgh, Crew Building, Edinburgh, EH9 3FF, UK ²National Centre for Earth Observation, The University of Edinburgh, Crew Building, Edinburgh, EH9 3FF, UK

³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

JULES meeting 26-28 June 2017

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Evaluating GPP at regional and global scales

- Evaluate the ability of the JULES (vn3.4.1) LSM to simulate GPP at regional and global scales for 2001-2010.
 - Various meteorological datasets (WFDEI-GPCC, WFDEI-CRU and PRINCETON) and spatial resolutions.
- Compared to MODIS (satellite), FLUXNET-MTE (machine-learning) and CARDAMOM (data assimilation framework) GPP.

Global GPP

JULES simulates annual average global GPP of 140 PgC year⁻¹ over 2001-2010 when driven with WFDEI-GPCC.

Greater than MODIS, FLUXNET-MTE and CARDAMOM estimates by 25%, 8% and 23% on average, respectively.

Regional comparison of simulated GPP for various biomes

GPP analysed at regional scales by dividing the global land area into seven regions (4 extratropical and 3 tropical) for various biomes (forests, grasslands and shrubs).

Regional comparison of simulated GPP for various biomes

Regional comparison of simulated GPP for various biomes

JULES overestimates GPP in all 3 tropical land areas .

0.9

0.6

0.0

Forest

Grassland

Shrub

JULES-PRINCETON

JULES-WFDEI-GPCC-2degree

Regional comparison of simulated GPP for various biomes

JULES simulates GPP reasonably well in the extratropics.

Sensitivity to spatial resolution & meteorological dataset

Sensitivity to spatial resolution & meteorological dataset

Blue = PRINCETON > WFDEI-GPCC, orange = opposite

Lower surface air temperatures and higher precipitation in the WFDEI-GPCC dataset.

In the extratropics, JULES GPP (driven with the WFDEI-GPCC dataset) was found to increase with increases in surface air temperature and in the tropics, GPP was found to decrease with increases in air temperature.

Change in temperature (°C)

-200

In the extratropics, JULES GPP (driven with the WFDEI-GPCC dataset) was found to increase with increases in surface air temperature and in the tropics, GPP was found to decrease with increases in air temperature.

Sensitivity to spatial resolution & meteorological dataset

The **negative bias in JULES GPP in the subtropics** is due to low LAI simulated by the model compared to MODIS. MODIS LAI is used as input when generating the MODIS, FLUXNET-MTE and CARDAMOM GPP estimates.

The **negative bias in JULES GPP in the subtropics** is due to low LAI simulated by the model compared to MODIS. MODIS LAI is used as input when generating the MODIS, FLUXNET-MTE and CARDAMOM GPP estimates.

Negative bias in the subtropics could be improved with addition of droughtdeciduous PFT to JULES.

Differences in meteorological dataset affects how photosynthesis is calculated

Since the WFDEI-GPCC dataset has lower downward SW radiation than PRINCETON, photosynthesis in the WFDEI-GPCC driven simulation was more light-limited.

Difference in monthly climatologies of lightlimited model gridbox fractions (0-1) between the JULES-WFDEI-GPCC-1degree and JULES PRINCETON model simulations at global scales.

Photosynthesis in the WFDEI-GPCC driven simulation more light-limited than PRINCETON. Green = WFDEI-GPCC simulation more light-limited than PRINCETON, blue = opposite

February January April March Mav August September Octobe November December

Datasets & further information

- JULES GPP dataset
 - http://dx.doi.org/10.7488/ds/1461
- Ancillary data
 - http://dx.doi.org/10.7488/ds/1995
- Manuscript
 - Accepted for publication in GMD.
- PhD thesis
 - http://hdl.handle.net/1842/18757