Managing the risk of agricultural drought in Africa

Emily Black, Dagmawi Asfaw, Matt Brown, Caroline Dunning, Fred Otu-Larbi, Tristan Quaife

> University of Reading, NCAS-Climate, NCEO, Ghana Meteorological Agency

Vulnerability

Sub-Saharan Africa

Agricultural labor force as a percentage of total labor force

Early warning by monitoring environmental conditions

Assessing risk using a snapshot of soil moisture

AMSA,

Meteorological input

National Centre for Atmospheric Science

Soil moisture based drought metric

2011-02-18-01.57

University of Reading

Meteorological forecasts: days to months ahead

ECMWF seasonal forecast

IRI seasonal forecast skill (precipitation, MAM, 3-month lead)

Concept

Given the:

- climatology
- state of the land surface
- stage of the rainy season
- meteorological forecast /climate regime

Monitoring agricultural drought: Evolving risk

Past – Historical climate	Future – Unknown climate

Agricultural Risk (depends on metric over whole period of interest)

Monitoring agricultural drought: Evolving risk

Past – metric from JULES forced with historical climate	Future – metric from JULES forced with climatology derived from observations from every past year for which we have obs.

Agricultural Risk (depends on metric over whole period of interest)

Concept

Complementary approach to 'direct' forecasts of e.g. soil moisture:

- Downscaled to driving rainfall data
- Bias correction on driving data is implicit
- Lightweight: can be run in house at met services
- Easily interfaced with impacts models (e.g. GLAM)

Case study: soil moisture memory and predictability northern Ghana

Case study: soil moisture memory and predictability northern Ghana

Projected and climatological time series

Before the period of interest

Outset of the period of interest

 p_{1}^{0} p_{2}^{0} p_{3}^{0} p_{4}^{0} p_{4

Projected and climatological time series

After the period of interest

Soil moisture memory

Case study: soil moisture memory and predictability northern Ghana

2.5.2

Day of Year

Monitoring risk during a drought year (2011 in Tamale)

Case study: soil moisture memory and predictability northern Ghana

Day of Year

Brier skill score of 0 indicates same skill as climatology Brier skill score of 1 indicates a perfect forecast

BSS calculated for all quintiles. More predictability for extremes.

Incorporating seasonal forecast data

661

571

Precipitation (mm)

Incorporating seasonal forecast data

Incorporating seasonal forecast data

When the probabilities are calculated, the output data from each ensemble member is weighted by the tercile of the precipitation used to drive it.

Idealised case:

Tercile 1 (below average) = Probability of 0.6 Tercile 2 (average) = Probability of 0.3 Tercile 3 (above average) = Probability of 0.1

University of

ng

Readi

We present a simple, but flexible framework for assessment of seasonal agricultural risk

- Historical knowledge of the climate over the long term (climatology) and the short term (seasonal evolution) can be used to estimate the seasonal risk of drought
- Accurate knowledge of the contemporaneous wetness of the soil forms the basis of forecasts of soil moisture and robust early warning of agricultural drought
- Tercile seasonal forecasts of mean seasonal rainfall have some limited value for deriving metrics of risk

Next steps:

Development, evaluation and exploitation

Science questions:

To what extent is agricultural drought predictable? And why?

- Weighting probabilistic assessments on real seasonal forecast data and other metrics
- Comparing other regions, soil/vegetation types

How are the factors governing agricultural risk changing?

- Weight risk assessments on 'proximity' of climatological year
- Run with climate model output

Next steps:

Development, evaluation and exploitation

Applications/pilots (evaluation):

Seasonal risk assessments

- Ghana Meteorological Agency, Ethiopian CGIAR pilots
- Risk Shield index insurance
- Gates Foundation TAMASA experimental sites

Short time scale risk

- Rainwatch Alliance, Senegal Met service: rainy season onset
- One Acre fund (320,000 farmers): planting date decision support and other decision support products

