Large-scale hydrological modelling of the Peruvian Amazon basin

Zed Zulkafli¹, Wouter Buytaert¹, Christian Onof¹, Waldo Lavado², Jean-Loup Guyot³

¹Department of Civil and Environmental Engineering, Imperial College, London ²Servicio Nacional de Meteorología e Higrología (SENAMHI), Lima, Peru ³Institut de recherche pour le développement (IRD), Lima, Peru

17 December 2012

Outline

- Research objective
- Method and Data
- Results and conclusions

Research objective

To assess the performance of JULES in large-scale humid tropical upland basins using

1. Simulation of streamflow

2.Simulation of "observed" surface fluxes

Method of evaluation

- Simulation of daily streamflow - conventional performance scores
- 2. Representation of "real" systems
 - simulated local surface fluxes

versus

 observed magnitudes and variations from the literature

The
 Peruvian
 Amazon
 river
 basin

Study area

> 360,000 km²

Daily streamflow:

> San Regis – mainstem, downstream

Daily streamflow:

- > San Regis mainstem, downstream
- Borja mainstem, upstream

Daily streamflow:

- > San Regis mainstem, downstream
- Borja mainstem, upstream
- Santiago Andean

Daily streamflow:

- > San Regis mainstem, downstream
- Borja mainstem, upstream
- Santiago Andean
- Chazuta southern tributary

Data

- Land cover data:
 - > Digital ecological systems map of Bolivia and Peru (90m, Josse et al. 2009)
 - > IGBP classification (MODIS 1km, Loveland et al. 2000)
 - > Aggregated to model resolution of 0.125 degree x 0.125 degree
- Soil data:
 - Harmonized World Soil Database (-1km, FAO, 2009)
- Driving data:
 - > TRMM 3B42 3-hourly rainfall, 0.25° resolution (Huffman, 2007)
 - Bias correction using the TRMM 2A25 climatology (Nesbit and Anders, 2009), 0.1° resolution
 - > NCEP Climate reanalysis, post-processed by Sheffield et al. 2006
 - 1° resolution, disaggregated to 0.125° by lapse rate interpolation

Model Parameters

- Most default parameters are retained
- PFT:
 - Canopy heights for broadleaf trees from 10-38m
- Soil hydraulics:
 - Brooks & Corey soil water retention parameters calculated using the pedotransfer functions of Tomasella & Hodnett, 1998.

Data uncertainty

- Modelling period: 1998-2008
- Q/P > 1 for most of the modelling period
 Evaluation focused on 2005-2008

Performance scores

• Trends follows the trends in the runoff ratios

Hydrological response

- Seasonality is well captured
- Good simulation of rising and recession limbs
- Inadequate simulation of floodplain regulation and baseflow contribution

- Blue plots are constructed from JULES simulated fluxes over the entire basin, separated by biomes
- Boxplots are constructed from published values in other lowland, flood, montane forests and Andean systems

- Underestimation of ET in the lowland and flood forests
- Underestimation of surface runoff in the montane forests and Andean systems

Conclusions

- JULES performance in humid tropical upland systems:
 - Assessment is limited by data uncertainty
 - Good simulation of hydrological response
 - except in baseflow-dominated and flood-regulated basins
 - Tendencies to underestimate the region's high evapotranspiration rates

Conclusions

- JULES performance in humid tropical upland systems:
 - Assessment is limited by data uncertainty
 - Good simulation of hydrological response
 - except in baseflow-dominated and flood-regulated basins
 - Tendencies to underestimate the region's high evapotranspiration rates
- Strategies to improve the representation of tropical systems:
 - addressing errors in the data
 - Improving the soil representation
 - Incorporating floodplain storage

Conclusions

- JULES performance in humid tropical upland systems:
 - Assessment is limited by data uncertainty
 - Good simulation of hydrological response
 - except in baseflow-dominated and flood-regulated basins
 - Tendencies to underestimate the region's high evapotranspiration rates
- Strategies to improve the representation of tropical systems:
 - addressing errors in the data
 - Improving the soil representation
 - Incorporating floodplain storage
- Discussion paper: Zulkafli, Z., Buytaert, W., Onof, C., Lavado, W., and Guyot, J. L.: A critical assessment of the JULES land surface model hydrology for humid tropical environments, Hydrol. Earth Syst. Sci. Discuss., 9, 12523-12561, doi:10.5194/hessd-9-12523-2012, 2012

THANK YOU.

Imperial College

References

- Best et al. (2011), The Joint UK Land Environment Simulator (JULES), model description Part 1: Energy and water fluxes, Geoscientific Model Development, 4, 677–699, 2011.
- FAO/IIASA/ISRIC/ISS-CAS/JRC (2009) Harmonized World Soil Database, FAO
- Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, E.F. Stocker, D.B. Wolff, 2007: The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale. J. Hydrometeor., 8, 33-55.
- Josse et al. (2007) Digital Ecological Systems Map of the Amazon Basin of Peru and Bolivia, NatureServe.
- Loveland et al. (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, International Journal of Remote Sensing, 21, 1303–1330.
- Nesbitt, S. and Anders, A.: Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar, Geophysical Research Letters, 36, L15 815+, http://dx.doi.5 org/10.1029/2009GL038026, 2009.
- Sheffield et al. (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, Journal of Climate, 19, 3088–3111