

#### Permafrost climate feedback – an application of vertically discretised soil carbon **PRELIMINARY RESULTS**

Altug Ekici, Eleanor Burke, Sarah Chadburn, Chris Huntingford, Pierre Friedlingstein, Przemyslaw Zelazowski

### Permafrost climate feedback



Schaefer, Kevin, et al. "The impact of the permafrost carbon feedback on global climate." Environmental Research Letters, 9.8 (2014): 085003.

#### This process is usually not included within Earth System Models

#### Model estimates of potential cumulative carbon release from thawing permafrost by 2100, 2200, and 2300.



Only Ref. 48 closes the permafrost carbon feedback loop

EAG Schuur et al. Nature 520, 1-9(2015) doi:10.1038/nature14338

## IMOGEN

- An intermediate complexity climate model to evaluate terrestrial impacts of a changing climate
- Used to explore how the inclusion of new terrestrial processes influence projections of climate change
- Computationally efficient so can readily included uncertainties in the processes

## IMOGEN coupled with JULES



## IMOGEN spinup



# Soil carbon was initialized using the soil carbon equilibrium code

Spin up with the 1961-1990 monthly climate data derived from the WATCH forcing data and the 1860 atmospheric CO2 concentration.

### **IMOGEN** transient runs

 Relationships between global land temperature and the spatial distribution of the required JULES driving variables are available for 22 different GCMs.

 Model run from 1860-2100 using A2 emissions scenario then constant emissions until 2300.



#### Global mean temperature



#### Land carbon



#### Soil carbon distributions [kg/m2] at 2100



#### Diagnosing permafrost carbon



- The simulated permafrost region in 1860.
- Soil carbon within the volume of permafrost is defined as PF carbon
- Soil carbon not contained in the permafrost is defined as NON PF carbon

#### Permafrost carbon



- Approx 560 GtC in the permafrost in 1860
- By 2100 only a small amount of PF carbon is lost ~ 20 to 100 Gt.
- Much more is lost by 2300

#### Model estimates of potential cumulative carbon release



EAG Schuur et al. Nature 520, 1-9(2015) doi:10.1038/nature14338

# Temperature change caused by including permafrost carbon



# Impact of soil carbon model parameterisation on feedback



### Conclusions

- IMOGEN is a useful framework for assessing the magnitude of feedbacks from the land carbon cycle
- Modelling uncertainties are readily included.
- Estimates are similar to previous values
- Paramererisation of the soil carbon model has a significant impact on magnitude of feedback.