Methane emissions from wetlands
A microbial model.
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+ many many others.




Methane from wetlands

e Greenhouse gas —» ~180 TgCH,/yr (- 4 GtC in CO,)

e Essential to include in climate projections




Measuring Methane
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Eddy covariance +
Other concurrently
measured variables.

' Samoylov

Great opportunity .

for modelling



Modelling Methane

e CH, ~ C exp(qT,,,) If the water table is at the surface

e CH,=0 otherwise



Modelling Methane

e CH,~ C exp(qT,,,) If the water table is at the surface

soil

e CH,=0 otherwise

e Some land surface models (e.g. CLM) simulate transport
and oxidation.

Transport through
aerenchyma

(" CH,

Ebullition
CH,

Diffusion

Methane oxidation: Methanogenesis:
CH,+20,2 C0O,+2H,0 - Hydrogenotrophic: CO,+4H, =22 H,0 +CH,
- Acetotrophic: CH,COOH - CO, +CH,



Modelling Methane

Transport is second order effect. CLM simulations:
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Modelling Methane

Key Is to get net production right.



Modelling Methane

Key Is to get net production right.

Simple scheme: CH, ~ C exp(qTy,,,)



Recreating the observations with the simple model: Cold sites

: — Observations (half-hourly)
Large q (EQUIV. QlO 5'2) Observations (daily)

Model
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Twitchell marsh - a warmer site

Use same parameters as for cold sites
Methane emission much higher than observed

CH, ~ C exp(qT)

CH4 flux (mg/m?/hr)
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Methane emissions, TgCH4/yr

Testing parameters in JULES

CH, ~ C exp(qT,,)

« Smaller q (equiv. Q,, = 3) obtained by fitting annual means.

e Global total much improved.
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CH4 flux (mg/m?/hr)

CH4 flux (mg/m?/hr)

Comparing new parameters with observations

Seasonal cycle is much too small.
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Introducing microbes

Enzymes

Soil organic carbon — Acetate, dissolved substrates
C exp(qT)

Microbes feed on dissolved substrates.



Seasonal cycle

Enzymes
Soil organic carbon — Acetate, dissolved substrates
C exp(qT)

Microbes (B) go dormant in winter, substrate (Ac)
accumulates — accelerated growth in summer.




Seasonal cycle

Enzymes
Soil organic carbon — Acetate, dissolved substrates
C exp(qT)

Microbes (B) go dormant in winter, substrate (Ac)
accumulates — accelerated growth in summer.
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Strom et al. Soil Biology and Biochemistry 45 61-70 (2012)



CH4 flux (mgC/m?/hr)

Microbial model

Enzymes

Soil organic carbon — Acetate, dissolved substrates
C exp(qT,)

In equilibrium, annual CH4 emission is the same as the
simple model. Seasonal cycle is amplified.

Samoylov Abisko Lompolojankka

—— Original model

Microbial model
*  Observations

CH4 flux (mgC/m?/hr)
4
|

CH4 flux (mgC/m?/hr)
4
|




CH4 flux (mgC/m°®/hr)

CH4 flux (mgC/m°/hr)
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Microbial model

In equilibrium, annual CH4 emission is the same as the
simple model. Seasonal cycle is amplified.
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Conclusions

e Priority: model CH, production before including transport
processes.

 Microbes drive the seasonal cycle of CH, emissions and
explain the high ‘observed Q,, .
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e Priority: model CH, production before including transport
processes.

 Microbes drive the seasonal cycle of CH, emissions and
explain the high ‘observed Q,, .

Future

e Put the microbial model in JULES.

 Develop a similar model for the aerobic case.

This will have huge consequences for carbon dynamics
globally.



Thanks for listening!

s.e.chadburn@exeter.ac.uk

Chadburn, et al. Biogeosciences 14, 5143-5169 (2017)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

