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Outline

* What do we know?
* What can we learn?
* Where do we go next?



» Rio Negro water level [ |

in Manaus was the 5 %}
lowest in the 109- | «: ST SN
year record in e F L QR R L N

October, 2010. Sand bars (pink) exposed in 2010, visible in
. . satellite images (http://na.unep.net/geas/)
* Rio Solimoes also

reached record low
levels in Oct. 2010.

« 2010 drought
affected nearly 5
million km? of = N

- - - 90% percantils

vegetated area. i

Minimum recorded
jan  1-feb 1-mar 1-apr 1-may 1-jun 1ol 1-aug 1-sep 1-0c1 1-nov 1-dec

Xuetal., GRL, 2011;
Espinozaetal., GRL,
2011
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Causes of 2010 drought

Vertically integrated water vapor
Anomalous SSTs flux vapor anomalies

Meridional
moisture flux
from 0-15S

Tropical North
Atlantic SSTs
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SEP 2010 - AVG SEP CRU-NCEP Temperature SEP 2010 - AVG SEP CRU-NCEP Precipitation = SEP 2010 - AVG SEP TRMM Precipitation
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- There is a tendency for an
increase in dry and very

301.0

dry events, especially in
the southern Amazon
during the dry season.
«  Warming in the tropical
North Atlantic can lengthen
the dry season and delay
Wetseasononset. J FMAMJ J A S OND J FMAMJ J A S OND

* [In 2010, this situation was
preceded by a drier than
usual wet season.

Marengo et al., GRL, 2011
Harper et al., in prep



Evidence for drought impacts

Vegetation indices (NDVI, EVI)
Atmospheric profile measurements
Inversions based on profile measurements
Forest inventory data

Chlorophyll fluorescence



Vegetation impacts

* Widespread, severe Vegetatin reemess Anaml
declines in vegetation NN
greenness over 51% of the
forests affected by rainfall
deficits in 2010.

« Declines persisted
following the end of the
dry season drought.

http://na.unep.net/geas/newsletter/im

° EStimated 2,2 GtC Of ages/Oct_11/anomalies.png

committed emissions from

drought-induced mortality. ot al. GRL 2011

Espinozaetal., GRL, 2011;
Lewis et al., Science, 2011



Drought impacts

* Drought suppressed Amazon-
wide photosynthesis by 0.38
PgC, midday basin-wide GPP
was reduced by 15%
compared to 2009,
associated with canopy
water stress.

« Total NPP was constant, but
autotrophic respiration in
roots and stems declined
significantly toward the end
of the drought. Implies that
trees prioritized growth.

* Following the drought, NPP
was allocated to canopy

more than fine roots. Doughty et al., 2015:
Nature;

Lee et al. 2013, PNAS.




Background

o Source Method Annual uptake Annual uptake
T 'I Ca l (eCm?*d") (PgC yr'')
y p Observations
All Amazon forests Gatti et al. 2014 Top-down using  0.10+0.06 0.25£0.14
. aircraft
C a r b O n S] n k measured CO,

Undisturbed Amazon  Phillips et al. 2009;  Bottom-up 0.16+0.11 0.39+0.27
forests Gloor et al. 2012 using

[ ]
] n t h e Undisturbed Tropical Pan et al. 2011 RAINFOR data 0.17 0.42
Amazon

American forests

Source Method 2010 uptake (gC | 2010 uptake

switched to a

C a r b O n Observations ]
All Amazon forests Gatti et al. Top-down using -0.19+0.07 -0.48+0.18

2014 aircraft measured
d Co,
SO u rce ] n Undisturbed Amazon Gatti et al. Top-down using 0.01+0.09 0.02+0.22

forests 2014 aircraft measured

CO,, excluding fire
201 O emissions
°

Harper et al., in prep



Background

* Are models able to
capture these basin-

scale responses? 10.73
« Was an anomaly in ((’)23'; -
GPP or Respiration ey
more to blame for -0.52
anomalous 2010 NEP? No change at
forest plots.
« What was the effect Drought reduced

on N PP7 maintenance Ra in

stems and roots
-0.37

No change?



Methods

 TRENDY experiment 53: CO, + climate +
land use change

* 10 DGVMs ran from PI-2012



Results: Amazon+Tocantins River
Basins
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a) Annual average NBP

Longterm
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NBP = GPP-R,-R,-Fire-FLuc

NEP = GPP-R,-R,

The difference between NEP and NBP is fire and land use emissions - indicating
these fluxes were underestimatedin the models during the drought.

Harper et al., in prep



JULES fluxes

Annual average GPP Annual average R,
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Results
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basin-scale

responses? 0.7
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Results

 Modeledreductionsin GPP were
reasonable in 2010 - but were they
for the correct reasons?

« 57% of the variationin JULES’
interannual, detrended GPP can be
recreated from temperature and
precipitation anomalies alone.

___

33dIHOHO

Actual GPP

Multilinear regression coefficients

___

33dIHOHO

Detrended GPP anomalies

1950 1960 1970 1980 1990 2000 2010 2020



SEP|2010 - AVG SEIP GOME FIuorIescence SEP I2010 - SEP 201|1 GOSAT FIuo:’escence
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e How can we assess | ] ?f\
basin-wide
temperature
sensitivity? s N T SeaEs
Fl uorescence: % difference % difference
observable from
satellites
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Results: Temperature sensitivity

Model GPP (gC m2d")

Model GPP (gC m?d™)
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Implication of temperature sensitivity
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Conclusions

« GPP in the models is still over-sensitive to temperature, and
undersensitive to precipitation and radiation (agrees with
findings from Galbraith et al. 2010, Rowland et al. 2015).

— What is the role of seasonal phenology?

« There is now a tropical PFT (not used in these experiments),
but what other diverse plant types would help capture
complex responses in the Amazon?

It would help to have carbon storage

— Nonstructural carbohydrates can store previously assimilated
ggql%(;n to be used during times of drought (Doughty et al.

* Many processes still missing: Fires, temperature acclimation,
and mortality

E@ER



Results: Temperature sensitivity

JULES everwet region (blue) +
seasonally dry (red)

SEP 2010 - AVG SEP GOME Fluorescence
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