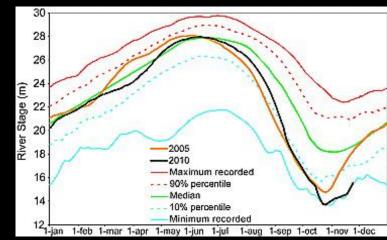
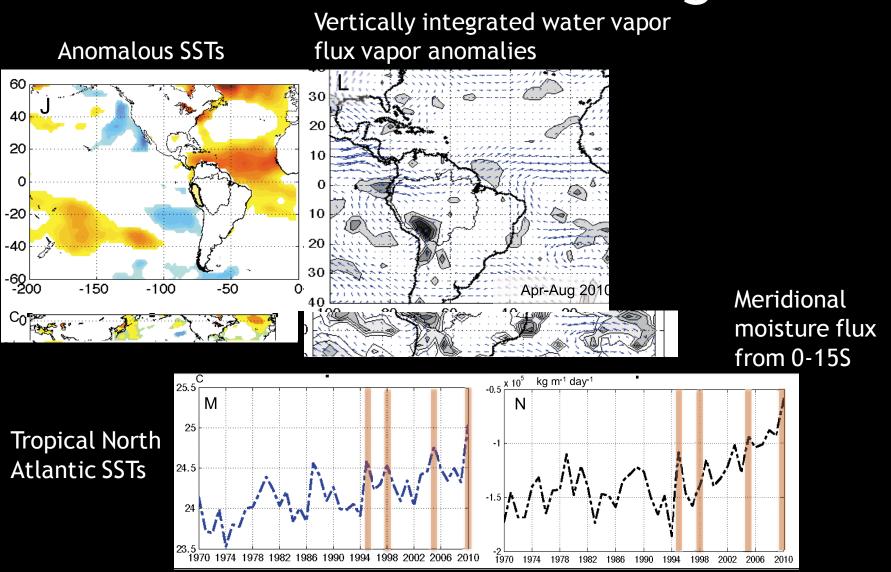

Learning from the 2010 Drought in Amazonia

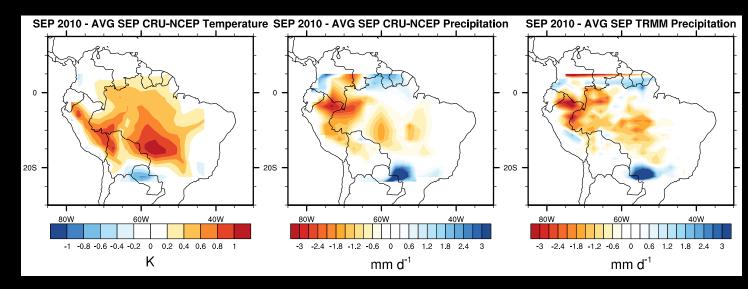
1st July, 2015 JULES science conference Anna Harper, P. Friedlingstein, P. Cox, S. Sitch, TRENDY modelers, N. Parazoo, C. Frankenberg a.harper@exeter.ac.uk

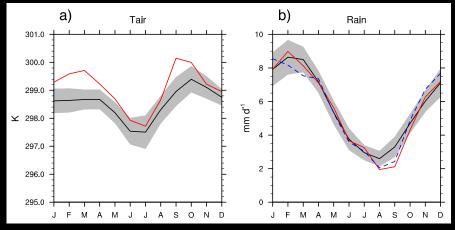

Outline

- What do we know?
- What can we learn?
- Where do we go next?

- Rio Negro water level in Manaus was the lowest in the 109year record in October, 2010.
- Rio Solimoes also reached record low levels in Oct. 2010.
- 2010 drought affected nearly 5 million km² of vegetated area.

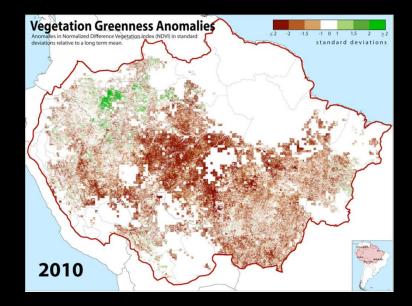



Sand bars (pink) exposed in 2010, visible in satellite images (http://na.unep.net/geas/)


Xu et al., GRL, 2011; Espinoza et al., GRL, 2011

Causes of 2010 drought

- There is a tendency for an increase in dry and very dry events, especially in the southern Amazon during the dry season.
- Warming in the tropical North Atlantic can lengthen the dry season and delay wet season onset.
- In 2010, this situation was preceded by a drier than usual wet season.

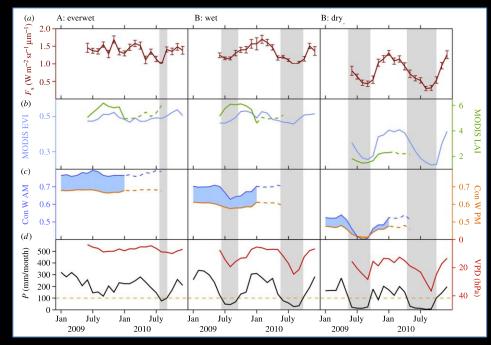

Marengo et al., GRL, 2011 Harper et al., in prep

Evidence for drought impacts

- Vegetation indices (NDVI, EVI)
- Atmospheric profile measurements
- Inversions based on profile measurements
- Forest inventory data
- Chlorophyll fluorescence

Vegetation impacts

- Widespread, severe declines in vegetation greenness over 51% of the forests affected by rainfall deficits in 2010.
- Declines persisted following the end of the dry season drought.
- Estimated 2.2 GtC of committed emissions from drought-induced mortality.



http://na.unep.net/geas/newsletter/im
ages/Oct_11/anomalies.png

Xu et al., GRL, 2011; Espinoza et al., GRL, 2011; Lewis et al., Science, 2011

Drought impacts

- Drought suppressed Amazonwide photosynthesis by 0.38 PgC, midday basin-wide GPP was reduced by 15% compared to 2009, associated with canopy water stress.
- Total NPP was constant, but autotrophic respiration in roots and stems declined significantly toward the end of the drought. Implies that trees prioritized growth.
- Following the drought, NPP was allocated to canopy more than fine roots.

Doughty et al., 2015: Nature; Lee et al. 2013, PNAS.

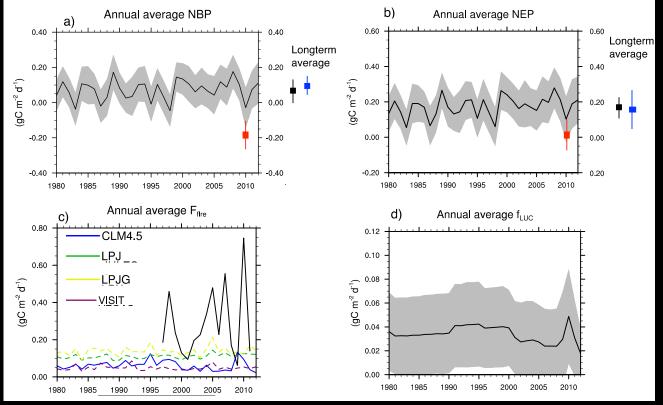
Background

Typical carbon sink in the Amazon switched to a carbon source in 2010.

Region	Source	Method	Annual uptake (gC m ⁻² d ⁻¹)	Annual uptake (PgC yr ⁻¹)
All Amazon forests	Gatti et al. 2014	Observations Top-down using aircraft measured CO_2	0.10±0.06	0.25±0.14
Undisturbed Amazon forests	Phillips et al. 2009; Gloor et al. 2012	Bottom-up using RAINFOR data	0.16±0.11	0.39±0.27
Undisturbed Tropical American forests	Pan et al. 2011		0.17	0.42

Region	Source	Method	2010 uptake (gC m ⁻² d ⁻¹)	2010 uptake (PgC yr ⁻¹)
All Amazon forests	Gatti et al. 2014	Observations Top-down using aircraft measured CO ₂	-0.19±0.07	-0.48±0.18
Undisturbed Amazon forests	Gatti et al. 2014	Top-down using aircraft measured CO_2 , excluding fire emissions	0.01±0.09	0.02±0.22

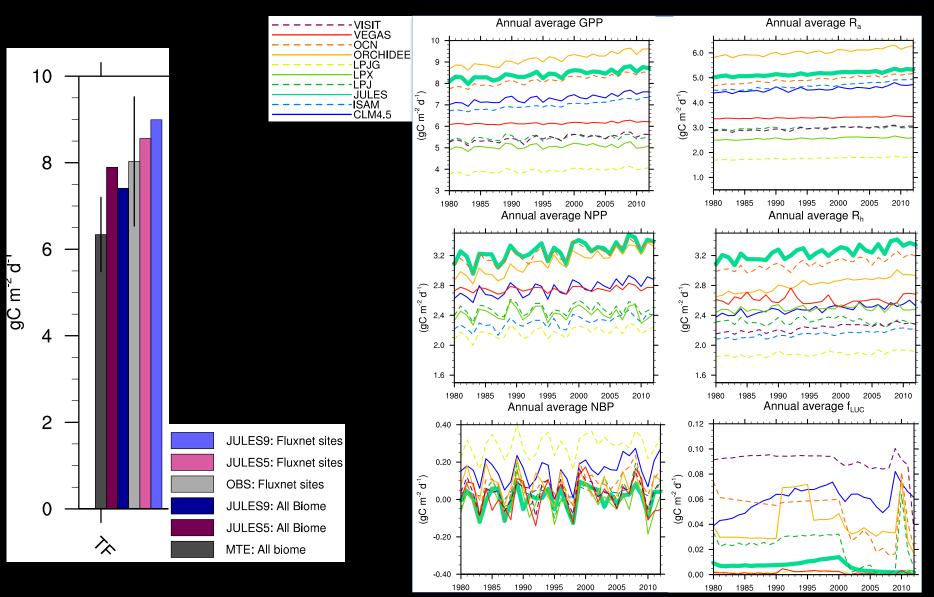
Background


- Are models able to capture these basin-scale responses?
- Was an anomaly in GPP or Respiration more to blame for anomalous 2010 NEP?
- What was the effect on NPP?

Flux	Observed difference: 2010- 2011 (PgC/yr)
NBP	-0.73
Fire	0.22
GPP	-0.38±0.15 -0.25±0.15 -0.52
NPP	No change at forest plots.
Ra	Drought reduced maintenance Ra in stems and roots
NEP	-0.37
Rh	No change?

Methods

- TRENDY experiment S3: CO₂ + climate + land use change
- 10 DGVMs ran from PI-2012


Results: Amazon+Tocantins River Basins

- NBP = GPP- R_h - R_a - F_{fire} - F_{LUC}
- NEP = GPP- R_h - R_a
- The difference between NEP and NBP is fire and land use emissions indicating these fluxes were underestimated in the models during the drought.

Harper et al., in prep

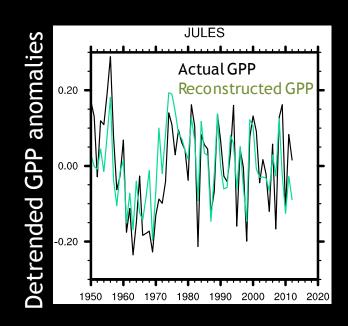
JULES fluxes

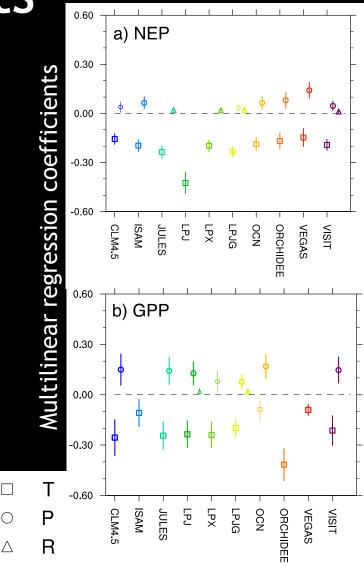
- Are models able to capture these basin-scale responses?
- Was an anomaly in GPP or Respiration more to blame for anomalous 2010 NEP?
- What was the effect on NPP?

Flux	Observed difference: 2010- 2011 (PgC/yr)	Modeled differen	
NBP	-0.73	-0.25	
Fire	0.22	0.01	
GPP	-0.38±0.15 -0.25±0.15 -0.52	-0.27	
NPP	No change at forest plots.	-0.22	
Ra	Drought reduced maintenance Ra in stems and roots	-0.05	
NEP	-0.37	-0.17	
Rh	No change?	-0.05	

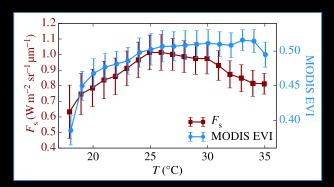
- Are models able to capture these basin-scale responses?
- Was an anomaly in GPP or Respiration more to blame for anomalous 2010 NEP?
- What was the effect on NPP?

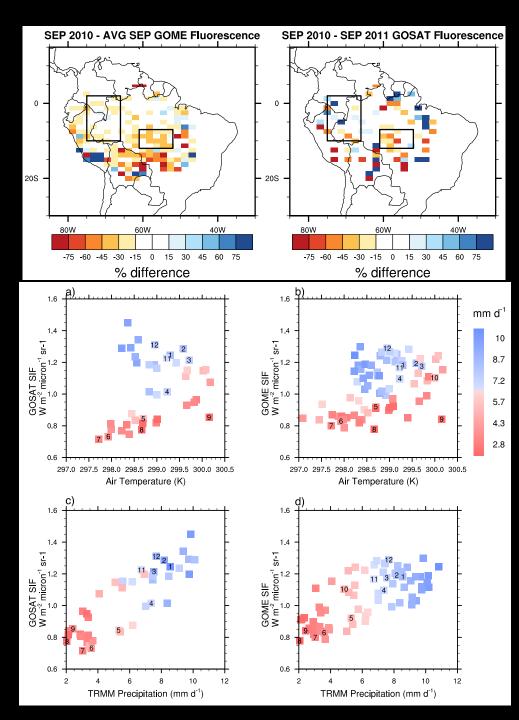
Flux	Observed difference: 2010- 2011 (PgC/yr)	Modeled differen	
NBP	-0.73	-0.25	
Fire	0.22	0.01	
GPP	-0.38±0.15	-0.27	
	-0.25±0.15 -0.52		
NPP	No change at forest plots.	-0.22	
Ra	Drought reduced maintenance Ra in stems and roots	-0.05	
NEP	-0.37	-0.17	
Rh	No change?	-0.05	

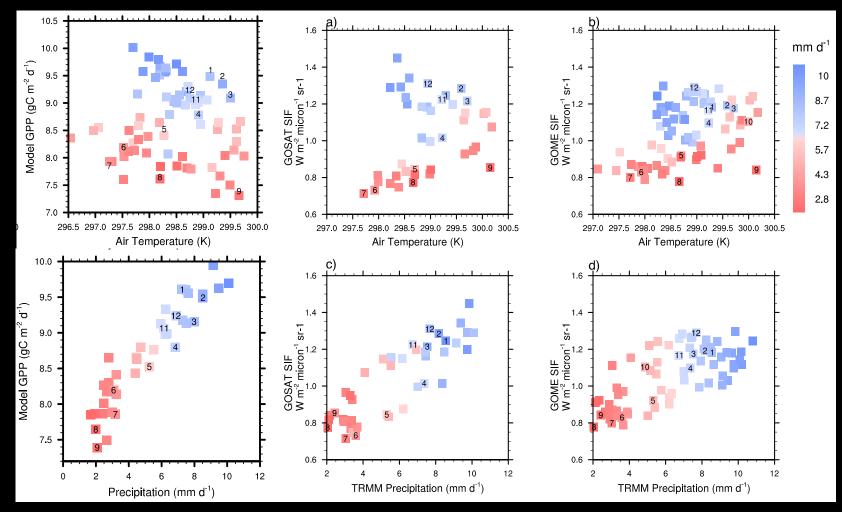

- Are models able to capture these basin-scale responses?
- Was an anomaly in GPP or Respiration more to blame for anomalous 2010 NEP?
- What was the effect on NPP?


Flux	Observed difference: 2010- 2011 (PgC/yr)	Modeled differen	
NBP	-0.73	-0.25	
Fire	0.22	0.01	
GPP	-0.38±0.15	-0.27	
	-0.25±0.15 -0.52		
NPP	No change at	-0 22	
	forest plots.		
Ra	Drought reduced maintenance Ra in stems and roots	-0.05	
NEP	-0.37	-0.17	
Rh	No change?	-0.05	

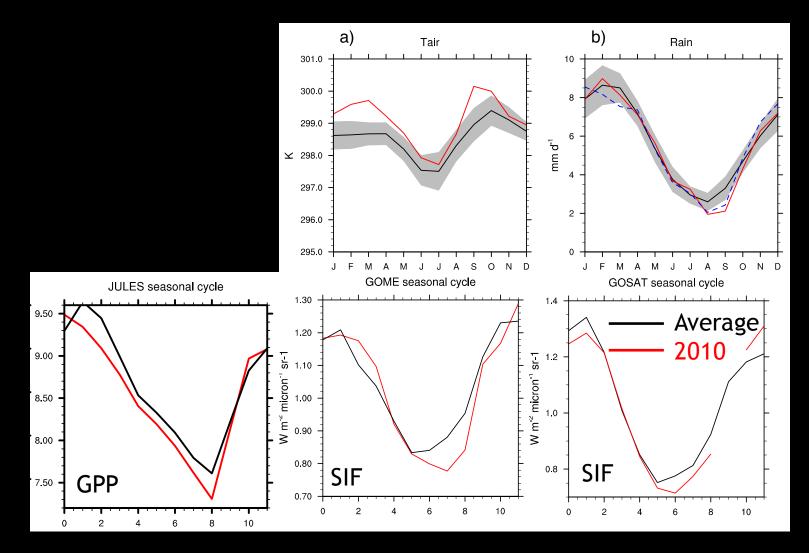
- Are models able to capture these basin-scale responses?
- Was an anomaly in GPP or Respiration more to blame for anomalous 2010 NEP?
- What was the effect on NPP?


Flux	Observed difference: 2010- 2011 (PgC/yr)	Modeled difference
NBP	-0.73	-0.25
Fire	0.22	0.01
GPP	-0.38±0.15 -0.25±0.15 -0.52	-0.27
NPP	No change at	-0.22
	forest plots.	
Ra	Drought reduced	-0.05
	maintenance Ra in stems and roots	
NEP	-0.37	-0.17
Rh	No change?	-0.05


- Modeled reductions in GPP were reasonable in 2010 - but were they for the correct reasons?
- 57% of the variation in JULES' interannual, detrended GPP can be recreated from temperature and precipitation anomalies alone.

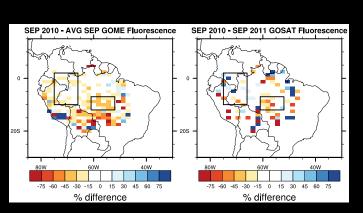


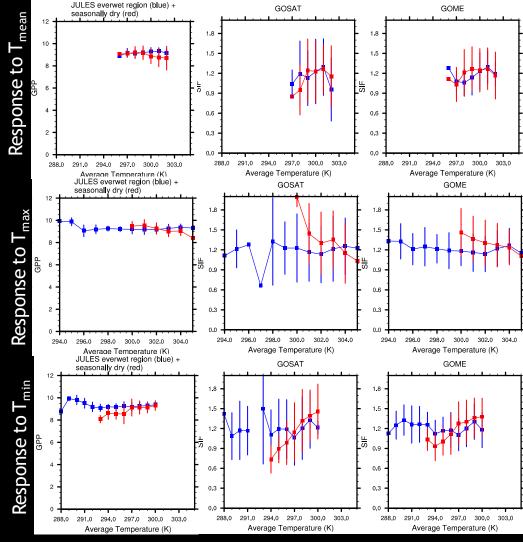
- How can we assess basin-wide temperature sensitivity?
- Fluorescence: observable from satellites



Results: Temperature sensitivity

Implication of temperature sensitivity




Conclusions

- GPP in the models is still over-sensitive to temperature, and undersensitive to precipitation and radiation (agrees with findings from Galbraith et al. 2010, Rowland et al. 2015).
 What is the role of seasonal phenology?
- There is now a tropical PFT (not used in these experiments), but what other diverse plant types would help capture complex responses in the Amazon?
- It would help to have carbon storage
 - Nonstructural carbohydrates can store previously assimilated carbon to be used during times of drought (Doughty et al. 2015).
- Many processes still missing: Fires, temperature acclimation, and mortality

Results: Temperature sensitivity

