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Top-level research questions
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Does elevated CO, increase the carbon storage?

Do other macro- or micro-nutrients limit the uptake of carbon?
What aspects of biodiversity and ecosystem structure-and-function alter?

How can lessons learnt be generalised to other woodlands and forests? (Global Network of
second-generation Forest FACE experiments)



The BIFoR FACE facility- mill Haft woodland, Staffordshire

A research platform to study the response of a mature temperate
deciduous forest ecosystem to elevated CO, over 10 years
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2N Underway
* — Eddy covariance flux measurements (CO, H,O, CH,)

— Stream Monitoring (Discharge,Water temperature, pH, Turbidity, Dissolved | I
oxygen, Nitrate & Nitrite, Dissolved organic carbon '

— LAl - via hemispherical photography
— Phenocam

— Met kit

— Plant tissue sampling

— Invertebrate sampling

— Litter traps

— Dendrometers
— Soil sampling - inc. soil moisture, temperature, characteristics

: Pendlng

— Leaf gas exchange (Licor 6400 just arrived!)

— Soil gas fluxes (soil chambers in the post)

— Minirhyzotrons (to be installed)
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Laser Scanning

% N
3D reconstruction of trees
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Eddy Covariance Flux System

* Tower height: 30m

* Canopy height: 23m

* Measurements:

* Phenology camera

* CO,, H,0O, CH, fluxes

* PAR profile (30, ~17, ~10m)
* Rainfall

* Long and short wave radiation balance (30m)

* Temperature/Humidity , PAR &Turbulence profile
30, (~17, ~10m)

* Powered by methanol fuel cell, remote access via
3G network




Preliminary Flux results
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Phenology Camera

PhenoCam Image Processor v1.1
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Stream Monitoring Equipment
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Plant ecophysiology
Leaf-canopy scale research

Two broad topics:
Mechanisms - how plants sense and respond to environmental changes

Scaling - how these responses are coordinated with one another, and how
their collective effect on plant growth and gas exchange can be understood
and modelled.




Photosynthesis and chlorophyll fluorescence

Dr Kadmiel Maseyk, Open University

Chlorophyll fluorescence can be measured at the
leaf-level, and detected from canopy, airborne
and satellite platforms

It is an emerging tool for estimating
photosynthesis at canopy to global scales

We aim to see if we can detect and monitor
photosynthetic differences between eCO, rings,

control rings and surrounding forest?
Fluorescence - remote sensing

Field measurements (June-Sept)

Leaf CO, assimilation rate measurements
Leaf-level measurements of chlorophyll
fluorescence

Pigment analysis and leaf-CO, assimilation

rates

Analyses to follow

Compare CO,, fluorescence and Phenocam
images

Ground truthing of remotely sensed
fliinreccance cinnalc




Tree ring analyses

Dr Neil Loader, Swansea University

Laboratory measurements in progress

Ring width measurements for whole core ~150 years
Stable carbon isotope analyses of latewood cellulose
Stable oxygen isotope analyses of latewood cellulose

Analyses to follow
Spatial and temporal variability in ring widths & isotope composition
Intrinsic Water Use Efficiency of trees - from carbon isotopes

Water source for cellulose formation - precip., soil water, leaf water



Tree water-use efficiency

How has the (intrinsic) water-use
efficiency (iWUE) of the oak trees changed
over the last ~100 years ?
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— [(88C, - 883C, ) / (1+ 813C, /1000 )]
1.6(b — a)

iWUE = ¢,

a = isotopic fractionation during diffusion of CO, into leaves
b = isotopic fractionation during carboxylation CO, into carbohydrates 295 315 335 355
813C,, = carbon isotopic ratio (*C/2C) of atmospheric CO, ¢, (umol mol™)
813C,, = carbon isotopic ratio of plant material

¢, = atmospheric CO, concentration

1.6 = difference in diffusivity of CO, and water vapour in air



Oak leaf traits, C & N measurements

Mill Haft woodland April-June 2015
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C and N allocation during phenological changes

Oak bud burst Mill Haft - 29/04/15

Field sampling
2-weekly twig/bud/leaf samples from top, mid, lower oak canopy
Monthly collection of samples from lower canopy at Wytham wood

Laboratory measurements in progress

Leaf traits (wet and dry mass, area), stem elongation
% C and N in new twig wood, buds, leaves

Stable carbon and oxygen isotope analyses of samples

Joint UK Land-Environment Simulator

Analyses to fO"OW Precipitation Heat Evaporation €O, CH, Momentum
Comparisons with phenocam vegetation indexes, Ramw\l\. / / / / /

flux tower CO, and H,O exchanges il B | |
JULES modelling L '
Responses under enhanced CO,




Phenocam - Gcc index Green chromatic coordinate

Oak bud burst Mill Haft - 29/04/15
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JULES - Joint UK Land-Environment Simulator

Can JULES simulate the observed
fluxes, leaf/twig C, N and phenological
changes observed at Mill Haft ?

Run JULES vn4.2 point location forced brocipitation Heat Evaporation €O, CH, Momentum
with hourly Shawbury meteorological Rediation \ /7777

station data N\ Ml

Compare timing of leaf development,
tower fluxes and leaf C and N for
‘broadleaf tree’ fraction

Change key parameters in JULES
(Vcmax, Jmax) based on Mill Haft
observations to see if simulations
improve

Test a semi-mechanistic phenology
model within JULES



JULES - some preliminary results
Flux tower C flux and JULES NPP (KgC/m2/day)

Mill Haft - 29/04/15
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JULES - some preliminary results

Flux tower C flux and JULES NPP (KgC/m2/hour)

C flux
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" Intenswe 2- week F|eId Campalgn JuIy/August 2015

. Aims:

\ * Make specialised ‘intensive’ measurements
# ¢ Provide higher temporal & spatial resolution data

Ve K Operational dry run - check core measurements are
picking up required variables (C,N, H,O cycles)

__ Participants:
gz" * David Ellsworth, Kristine Crous, Anna Harper, Lina Mercado,
? Stephen Sitch - leaf gas exchange, temp/light/CO, response curves,

A Vc max Jmax

wf * Francis Pope - VOCs, Bioaerosol, particulates
4 * Debbie Hemming - leaf C, N and 9613C and 015N




Please contact me if you have ideas for
measurements/experiments at Mill Haft

Thank you !




Plant ecophysiology




Photosynthesis and chlorophyll fluorescence

How is the development of the
photosynthetic apparatus during
phenological development affected by eCO,?

Phenological ‘greening-up’ is related to Incident light & sectance

increases in leaf area, and development
of chlorophyll and other pigments
associated with photochemistry

chlorophyll _gg5.09
v fluorescence

Iphotosynthesis = 0-82 %
heat =17.5-98 %

Fluorescence is given off during the
photochemical reactions

transmittance
i //// ::;:--- J J | -:--.:-:\-:;;..\;\\\:.\.?'-\
jd ws s we | Fluorescence provides information on the
S =j_;%_—' 3 & o state of photosystems, response to stress
\ - = / and rates of CO, fixation
AN 4.':"




Diurnal Cycles
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C and N allocation

What are the seasonal dynamics of C and N
allocation in oak ?

Aviemore, Scotland oak tree ring carbon isotopes
Earlywood and Latewood

Stored carbohydrates (esp. starch) are
vital for the resilience of trees to
variable environmental conditions and
other stresses
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Overview

* Tree ring analyses

* Cand N allocation during
phenological changes

Incident light

reflectance
* Photosynthesis and | T woss2%
chlorophyll fluorescence W absorptiont ohatosyntnesis <0-827%

heat =17.5-98 %

transmittance




Chlorophyll fluorescence - leaf to global scales

Can we use UAV-based systems to detect
chlorophyll fluorescence from the canopy and
determine canopy-level effects of eCO, on

photochemistry and CO, assimilation? (with Rick
chl Thomas)
from canopy, airborne and satellite platforms

It is an emerging tool for estimating photosynthesis at canopy to global
scales

We aim to see if we can detect and monitor photosynthetic differences
between eCO, rings, control rings and surrounding forest?
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