

UNIVERSITY^{OF} BIRMINGHAM

FACE 2.0 BIFOR FACE - Global facility for research & science translation

Coordinated with Hawksbury EucFACE, Western Sydney Australia

Top-level research questions

- 1. Does elevated CO₂ increase the **carbon storage**?
- 2. Do other macro- or micro-nutrients limit the uptake of carbon?
- 3. What aspects of **biodiversity and ecosystem structure-and-function** alter?
- 4. How can lessons learnt be **generalised** to other woodlands and forests? (Global Network of second-generation Forest FACE experiments)

The BIFoR FACE facility- Mill Haft woodland, Staffordshire

BIFoR Research Team Lead – Prof Rob Mackenzie

Theme 1: Ecological – Dr Alex Poynter

Theme 2 (and Baseline lead): Atmospheric – Dr Rick Thomas

Theme 3: 'Omics' – Dr Will Allwood

Theme 4: Hydrological / Hydrogeological – Dr Phil Blaen

Theme 5: Litter and sub-surface systems – TBC

Theme 6: Stable isotopes & links with ecosystem modelling – Dr Debbie Hemming

Core Measurements at Mill Haft - baselining

Underway

- Eddy covariance flux measurements (CO₂, H₂O, CH₄)

- Stream Monitoring (Discharge,Water temperature, pH, Turbidity, Dissolved oxygen, Nitrate & Nitrite, Dissolved organic carbon
- LAI via hemispherical photography
- Phenocam
- Met kit
- Plant tissue sampling
- Invertebrate sampling
- Litter traps
- Dendrometers
- Soil sampling inc. soil moisture, temperature, characteristics

Pending

- Leaf gas exchange (Licor 6400 just arrived!)
- Soil gas fluxes (soil chambers in the post)
- Minirhyzotrons (to be installed)

Laser Scanning

Tree Allometrics

1

Min = 0.466

Max = 0.893

 $X_{50} = 0.039$ P = 1.544

• : 564 ± 30 v: 444 ± 19

0.1

n=74 r²=0.97 RMSE=

Eddy Covariance Flux System

- Tower height: 30m
- Canopy height: 23m
- Measurements:
- Phenology camera
- CO_2 , H_2O , CH_4 fluxes
- PAR profile (30, ~17, ~10m)
- Rainfall

- Long and short wave radiation balance (30m)
- Temperature/Humidity, PAR & Turbulence profile 30, (~17, ~10m)
- Powered by methanol fuel cell, remote access via 3G network

Preliminary Flux results

Flux Footprint Estimates 🔺 90% distance (m) 📀 Peak (m)

Phenology Camera

http://phenocam.sr.unh.edu/data/latest/millhaft.jpg

Stream Monitoring Equipment

Plant ecophysiology Leaf-canopy scale research

Two broad topics:

Mechanisms - how plants sense and respond to environmental changes

<u>Scaling</u> - how these responses are coordinated with one another, and how their collective effect on plant growth and gas exchange can be understood and modelled.

Photosynthesis and chlorophyll fluorescence

Dr Kadmiel Maseyk, Open University

Chlorophyll fluorescence can be measured at the leaf-level, and detected from canopy, airborne and satellite platforms

It is an emerging tool for estimating photosynthesis at canopy to global scales

We aim to see if we can detect and monitor photosynthetic differences between eCO₂ rings, control rings and surrounding forest?

Field measurements (June-Sept) Leaf CO_2 assimilation rate measurements Leaf-level measurements of chlorophyll fluorescence Pigment analysis and leaf- CO_2 assimilation rates

Analyses to follow

Compare CO₂, fluorescence and Phenocam images Ground truthing of remotely sensed fluorescence signals

Fluorescence – remote sensing

Tree ring analyses

Dr Neil Loader, Swansea University

26/03/15 - 5mm diameter cores taken from 23 trees

Laboratory measurements in progress

Ring width measurements for whole core ~150 years Stable carbon isotope analyses of latewood cellulose Stable oxygen isotope analyses of latewood cellulose

Analyses to follow

Spatial and temporal variability in ring widths & isotope composition Intrinsic Water Use Efficiency of trees – from carbon isotopes Water source for cellulose formation – precip., soil water, leaf water

Tree water-use efficiency

How has the (intrinsic) water-use efficiency (iWUE) of the oak trees changed over the last ~100 years ?

iWUE =
$$c_a \frac{b - [(\delta^{13}C_a - \delta^{13}C_p) / (1 + \delta^{13}C_p / 1000)]}{1.6(b - a)}$$

- a = isotopic fractionation during diffusion of CO_2 into leaves
- b = isotopic fractionation during carboxylation CO_2 into carbohydrates
- $\delta^{13}\text{C}_{\text{a}}$ = carbon isotopic ratio (^13C/^12C) of atmospheric CO_2
- $\delta^{13}C_p$ = carbon isotopic ratio of plant material
- $c_a = atmospheric CO_2$ concentration
- 1.6 = difference in diffusivity of CO_2 and water vapour in air

Oak leaf traits, C & N measurements

Mill Haft woodland April-June 2015

%Cleaf ~ 45% +/- 3%
%Nleaf April ~ 7% +/- 2%
May ~ 4% +/- 2%
June ~ 2% +/- 1%

%Cstem ~ **40%** +/- 5%

%Nstem ~ **1%** +/- 0.5%

C and N allocation during phenological changes

Oak bud burst Mill Haft - 29/04/15

Field sampling

2-weekly twig/bud/leaf samples from top, mid, lower oak canopy Monthly collection of samples from lower canopy at Wytham wood

Laboratory measurements in progress

Leaf traits (wet and dry mass, area), stem elongation % C and N in new twig wood, buds, leaves Stable carbon and oxygen isotope analyses of samples

Analyses to follow

Comparisons with phenocam vegetation indexes, flux tower CO₂ and H₂O exchanges JULES modelling Responses under enhanced CO₂

Joint UK Land-Environment Simulator

Phenocam – Gcc index Green chromatic coordinate

JULES – Joint UK Land-Environment Simulator

Can JULES simulate the observed fluxes, leaf/twig C, N and phenological changes observed at Mill Haft ?

Run JULES vn4.2 point location forced with hourly Shawbury meteorological station data

Compare timing of leaf development, tower fluxes and leaf C and N for 'broadleaf tree' fraction

Change key parameters in JULES (Vcmax, Jmax) based on Mill Haft observations to see if simulations improve

Test a semi-mechanistic phenology model within JULES

JULES – some preliminary results

Flux tower C flux and JULES NPP (KgC/m2/day)

JULES – some preliminary results

Flux tower C flux and JULES NPP (KgC/m2/hour)

Intensive 2-week Field Campaign - July/August 2015 Aims:

- Make specialised 'intensive' measurements
- Provide higher temporal & spatial resolution data
- Operational dry run check core measurements are picking up required variables (C,N, H₂O cycles)

Participants:

- David Ellsworth, Kristine Crous, Anna Harper, Lina Mercado, Stephen Sitch – leaf gas exchange, temp/light/CO₂ response curves, V_{c,max} J_{max}
- Francis Pope VOCs, Bioaerosol, particulates
- Debbie Hemming leaf C, N and δ^{13} C and δ^{15} N

Please contact me if you have ideas for measurements/experiments at Mill Haft

Thank you !

Plant ecophysiology

Photosynthesis and chlorophyll fluorescence

How is the development of the photosynthetic apparatus during phenological development affected by eCO₂?

Phenological 'greening-up' is related to increases in leaf area, and development of chlorophyll and other pigments associated with photochemistry

Fluorescence is given off during the photochemical reactions

Fluorescence provides information on the state of photosystems, response to stress and rates of CO_2 fixation

Diurnal Cycles

What are the seasonal dynamics of C and N allocation in oak ?

Stored carbohydrates (esp. starch) are vital for the resilience of trees to variable environmental conditions and other stresses

Earlywood in oak trees is typically formed from the previous years' carbohydrates

Aviemore, Scotland oak tree ring carbon isotopes Earlywood and Latewood

• Tree ring analyses

• C and N allocation during phenological changes

 Photosynthesis and chlorophyll fluorescence

Chlorophyll fluorescence - leaf to global scales

Can we use UAV-based systems to detect chlorophyll fluorescence from the canopy and determine canopy-level effects of eCO₂ on photochemistry and CO₂ assimilation? (with Rick

Chle Thomas)

from canopy, airborne and satellite platforms

It is an emerging tool for estimating photosynthesis at canopy to global scales

We aim to see if we can detect and monitor photosynthetic differences between eCO_2 rings, control rings and surrounding forest?

