

1

A Machine Learning emulator of JULES soil moisture: Applications to African drought

Jasdeep Anand and Rob Parker National Centre for Earth Observation University of Leicester

Machine Learning Emulation

□ Key Question: Can we emulate JULES soil moisture with a simple/fast machine-learning based algorithm?

Requirements and Objectives:

- □ Successfully develop emulator for African soil moisture
 - Needs to be fast and light-weight
 - □ Capable of running in a Jupyter Notebook and/or in the cloud
- □ Assess emulator performance vs JULES simulations
- Apply emulator to ISIMIP-driven climate scenarios to allow exploration of climate responses

Machine Learning Emulation

- We tested a range of machine learning methods:
 - Support Vector Machines, Penalised Regression, Decision Tree Methods
 - All worked (surprisingly) well but XGBoost has best performance
- The Extreme Gradient Boosting (XGBoost) algorithm
 - Output value of a single tree is determined through succession of specific value tests applied to input variables.
 - Gradient descent is used to determine which set of possible trees would minimise the prediction error
 - Nonlinear functions can be represented as a large ensemble of trees to cover a range of different scenarios.

Natural Environment Research Council

Emulating JULES simulations driven by TAMSAT/CRU-NCEP data Training data selection

- To train and test the emulator, JULES simulations of African soil moisture were made between 1999-2020 using TAMSAT (precipitation) and CRU-NCEP (temperature) as input data
- 2000-2019 used as training data, while 2020 reserved for validation only
- Initially, 26 variables were used as training data, taken from the following daily mean variables from the JULES output:
 - Temperature (also daily minimum & maximum)
 - Downward shortwave solar radiation
 - Precipitation
 - Specific humidity
 - Surface pressure
 - Wind speed
- To introduce memory of soil moisture dependence on seasonality and prior weather conditions, we also included:
 - 20-day smoothed temperature, specific humidity, and precipitation
 - 1-7 day lagged specific humidity and precipitation

National Centre for Earth Observation

Natural

Environment Research Council Emulating JULES simulations driven by TAMSAT/CRU-NCEP data Training data needs to be representative of all possible African climates – sample data from 10 grid cells

Jasdeep Anand | jsa13@le.ac.uk | University of Leicester

Earth Observation

ATURAL ENVIRONMENT RESEARCH COUNCIL

Emulating JULES simulations driven by TAMSAT/CRU-NCEP data Initial results trained with only 10 grid points demonstrated good overall agreement, but poor performance over the Sahara and Southern Africa

Emulating JULES simulations driven by TAMSAT/CRU-NCEP data Adding more grid cells to training dataset helps to improve emulator performance... Tested 10, 50, 200 and 1000 grid cells in training dataset

50 training grid cells

Adding more grid cells helps to improve emulator performance... to an extent

200 training grid cells

Adding more grid cells helps to improve model performance... to an extent

1000 training grid cells

Update training dataset with ancillary information

- Despite improved accuracy, the overall model performance is still hampered by poor agreement over the Sahara and Namibian deserts, and savannah in Southern Africa - Does the emulator need contextual information too?
- Our biases have **similar patterns** to some of the ancillary data...
- □ Solution: Update training dataset with timeinvariant JULES ancillary variables for each grid cell:
 - □ Soil type coverage
 - □ Soil bulk density
 - Vegetation type coverage
 - □ Soil carbon storage
 - Topography

National Centre for

ATURAL ENVIRONMENT RESEARCH COUNCIL

Earth Observation

□ Soil hydrological information

0.350

0.325

0.300

0.275

e CLI 1

volumetri

0.200

0.175

0.150

TUU

80

60

40

20

percent sand content of soil

jsa13@le.ac.uk University of Leicester Jasdeep Anand

Adding ancillary information to training dataset greatly improves emulator performance

No ancillary data

With ancillary data

The emulator also shows excellent temporal agreement with the original JULES soil moisture

Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Research Council

Emulating JULES forecasts using ISIMIP climate scenario data

Emulator retrained using ISIMIP historical data (1985-2005), then applied to predict RCP scenarios from 2006-2099

- ❑ JULES ISIMIP setup different than historical setup (resolution, ancils, etc) so model retrained, including [CO₂] as a feature
- Emulator used to predict soil moisture for ISIMIP-based RCP climate scenarios: RCP2.6 (< 2°C rise), RCP6.0 and RCP8.5 (BAU)
- For all of Africa, the error is typically < a few
 % after training on 1000 locations (~2% of total grid cells)
- Emulator reproduces 2006–2099 period simulated by JULES very well

MAE from emulating ISIMIP simulations

Summary and Conclusions

- □ Successfully developed machine-learning based emulator for JULES soil moisture
- □ Initial testing of various methods **all** gave good results but settled on XGBoost algorithm
- Emulator is **VERY** fast/light-weight (runs in a few ms per grid cell per year)
- □ Performance metrics (MAE and RMSE) used to assess performance over whole of Africa
- □ Emulator performance improved iteratively by:
 - Adding in more training **locations** (better sampling of feature-space)
 - □ Adding in more training **features** (e.g. soil ancil data)
- □ Final model performs **extremely well**
 - □ Error **typically < a few %** compared to original JULES simulation
- Model retrained on JULES ISIMIP historical simulations
 - □ Required as ISIMIP suite has different settings (different ancils, different resolution, etc)
 - □ Performance of ISIMIP simulations very good across multiple RCPs
 - □ Emulator can be used to **quickly explore** JULES response to different climate scenarios
- □ Lots of potential for expanding
 - □ Extend to other JULES processes
 - Rob/Tristan have proposal under consideration to do this for GPP
 - □ Extend to other land surface models and cross-compare
 - Do some interesting science with it!

