
Land surface modeling and data assimilation 
with the NASA Land Information System (LIS) 

 
http://lis.gsfc.nasa.gov 

 

Sujay V. Kumar 

 

Science Applications International Corporation,  

Hydrological Sciences Laboratory, Goddard Space Flight Center 



NASA Land Information System (LIS) 

Kumar et al. (2006): Land Information System: An interoperable Framework for High Resolution Land Surface Modeling, 
Environmental Modeling and Software, Vol 21, pp 1402-1415.  

Peter-Lidard et al. (2007): High-performance earth system modeling with NASA/GSFC’s Land Information System, Innovations in 
Systems and Software Engineering, 3(3),157—165. 

A system to study land surface processes 
and land-atmosphere interactions 

“Use best available observations” to 
constrain and inform models. 

Runs a variety of land surface models  

Integrates satellite, ground and 
reanalysis data  

Includes high performance support for 
fine resolution modeling 

Built as a flexible framework that allows 
the interoperable use of data and models  

Coupled to other Earth system models 

Includes a number of computational 
subsystems for exploiting information 
from observations.  



LIS - OPT/UE

Optimization and Uncertainty Estimation

(LM, SCE-UA,GA, RW-MCMC, DEMC)

Land Surface Models (Noah, 

CLM, VIC, Catchment, JULES, 

Sacramento, CABLE), Lake 

models (FLake)

Water and Energy 

Fluxes, Soil Moisture and 

Temperature profiles, 

Land surface states

Parameters

(Topography, Soil 

properties, vegetation 

properties)

Meteorological 

Boundary Conditions 

(Forcings)

States (Soil Moisture, 

Snow, Skin 

Temperature)
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and WRF, Environmental Modeling and Software, 23(2), 169-181.  
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LIS subsystems and toolkits 

LDT

Land surface parameter processing

DA/OPTUE preprocessing

Downscaling support

Forcing adjustments (bias correction)

Restart/ensemble generation

LVT

Model evaluation and benchmarking

Hydrological products (drought 

indices, flood indicators)

SN OT EL SCAN
M OD I S

LIS – modeling environment that encapsulates:  

Land surface models, data assimilation support, radiative transfer models, meteorological data support.   

Land surface Data Toolkit (LDT) supports preprocessing needs of LIS: 

 Processing of land surface parameters from their native sources 

Downscaling and bias correction of forcing data 

Data fusion algorithms (ANNs, statistical learning)  

Land verification Toolkit (LVT) supports postprocessing, evaluation, benchmarking 

Large suite of analysis metrics 

Support for in-situ, reanalysis and remote sensing data.  

Kumar et al. (2012), Land surface Verification Toolkit (LVT) – A generalized framework for land surface model evaluation, Geosci. Model. Dev.   



Snow water equivalent 
(AMSR-E, SSM/I, 

SCLP) 

Land surface temperature 
(MODIS, AVHRR,GOES,… ) 

Precipitation  
(TRMM, GPM) 

Radiation  
(CERES, CLARREO ) 

Vegetation/Carbon  
(AVHRR, MODIS, DESDynI, 

ICESat-II, HyspIRI, LIST, 
ASCENDS ) 

Surface soil moisture  
(SMMR, TRMM, AMSR-E, 
SMOS, Aquarius, SMAP) 

Terrestrial water storage (GRACE) 

Water surface elevation 
(SWOT) 

Snow cover fraction  
(MODIS, VIIRS, MIS) 

Remote sensing data for land data assimilation 



Data Assimilation subsystem in LIS 

Kumar, S.V., R.H. Reichle, C.D. Peters-Lidard, R.D. Koster, X. Zhan, W.T. Crow, J.B. Eylander, P.R. Houser (2008), A Land Surface Data Assimilation 
Framework using the Land Information System: Description and Applications, Adv. Wat. Res., 31, 1419-1432. 

Primarily used for state estimation - Corrects model states 
based on observations 

Advanced algorithms such as the Ensemble Kalman Filter 
(EnKF), Ensemble Kalman Smoother (EnKS) 

Supports the interoperable use of multiple land surface 
models, multiple algorithms and multiple observational data 
sources 

Support for concurrent data assimilation, forward models, 
radiance assimilation, observation operators employing 
advanced data fusion methods (deep learning)  
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An Integrated Terrestrial Water Analysis System 

enabled by LIS 

A unique analysis that concurrently employs a comprehensive set of remote sensing 
measurements to constrain terrestrial water budget terms in the NLDAS configuration, 
using LIS-DA capabilities.  

SOIL MOISTURE:  Daily 
soil moisture based from 

SMMR, SSM/I, AMSR-E, ASCAT, 
SMOS, Aquarius, AMSR2, 

SMAP

Terrestrial Water 
Storage: Monthly TWS 
anomalies from GRACE

Irrigation 
Intensity:
from MODIS

SNOW: Snow depth 
measurements from SMMR, 

SSM/I, AMSR-E, AMSR2, snow 
cover measurements from 

MODIS, AVHRR, VIIRS

Water surface 
elevation:

from satellite altimetry 
(SWOT, Jason, ICESat2)

Vegetation: from 
MODIS, VIIRS



  
NLDAS configuration 

Model domain: Continental 
United States (CONUS) at 1/8th 
degree spatial resolution, 
including parts of 
Canada/Mexico (25-53° N; 125-
67° W) 

 
Forcing data: NLDAS-phase 
II (NLDAS2) 
 meteorological forcing data.  
 
Models: Noah LSM version 3.3, 
and CLSM Fortuna 2.5: a 60-
year spin-up, followed by 34 
years of simulation; streamflow 
simulations using HyMAP 
(Getirana et al. 2012) 
 
Data assimilation method: 
1-d Ensemble Kalman Filter 
(EnKF) and 3-d Ensemble 
Kalman Smoother (EnKS) 
 
Time period: Jan 1, 1979 to 1 
Jan 2013.  
 
Boxes with solid lines 
represent products that are 
currently assimilated, 
dashed boxes represent 
products in pipeline 1980 1985 1990 1995 2000 2005 2010 2015
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Evaluation of  NLDAS outputs 

Soil moisture: 

USDA Soil Climate Analysis Network (SCAN); 123 stations chosen after careful 

quality control (used for evaluations between 2000-2011)  

Four USDA ARS experimental watersheds (“CalVal” sites) (used for evaluations 

between 2001-2011) 

Snow depth: 

Canadian Meteorological Center (CMC) daily snow depth analysis – used for 

evaluations between 1998-2012.  

Snow Data Assimilation System (SNODAS) products from the National 

Operational Hydrologic Remote Sensing Center (NOHRSC) – used for evaluations 

between 2003/10 – 2012) 

Streamflow: 

Gauge measurements from unregulated USGS streamflow stations (1981-

2011).  

All model verifications and analysis generated using the Land surface Verification Toolkit (LVT; Kumar et al. 2012) 

Groundwater: Gauge measurements from USGS ground water well stations (2000-2012).  

Fluxes: Gridded FLUXNET (Jung et al. 2009), ALEXI (Anderson et al. 2007), UW (Tang et 

al. 2009) and MOD16(Mu et al. 2011) 



  
Assimilation of  remotely sensed soil moisture measurements in 

NLDAS (Univariate assimilation) 

Impact of soil moisture DA on 

soil moisture skills 

Impact of soil moisture DA on 

streamflow skills (Warm colors 

indicate locations where DA provides 

improvement in streamflow NSE and 

cool colors indicate locations where 

DA leads to degradation in 

streamflow NSE) 

Impact of soil moisture DA on 

drought estimates (May 10-17, 2011).  

Anomaly 
 R 

Open loop  
(no DA) 

Soil 
moisture 

DA  

Vs ARS CalVal  
(surface)  

0.84 +/- 0.02 0.86 +/- 0.02 

Vs SCAN  
(surface) 

0.67 +/- 0.02  0.67 +/- 0.02 

Vs SCAN  
(root zone) 

0.60 +/- 0.02 0.59 +/- 0.02 

Kumar, S.V., C.D. Peters-Lidard, D. Mocko, R. Reichle, Y. Liu, K. Arsenault, Y. Xia, M. Ek, G. Riggs, B. Livneh, M. Cosh: 2014  

Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. Journal of Hydrometeorology, 15, 2446-2469,  

doi: http://dx.doi.org/10.1175/JHM-D-13-0132.1 

The impact of assimilating soil moisture retrievals from SMMR, SSMI, 

AMSR-E, ASCAT into the Noah LSM during a time period of 1979-2012. 
USD

M 

OL 

SM-DA 

Improvements in soil moisture fields are barely at the statistically significant levels 

Small improvements in streamflow 

Improvements in drought estimates at short time scales are seen from soil moisture DA 



  
Assimilation of  remotely sensed snow depth and snow cover 

measurements in the NLDAS (Univariate assimilation) 

Kumar, S.V., C.D. Peters-Lidard, K.R. Arsenault, A. Getirana, D. Mocko, Y. Liu: 2015  

Quantifying the added value of snow cover area observations in passive microwave snow depth data assimilation 

Journal of Hyrometeorology, in press, doi:10.1175/JHM-D-15-0021.1 

Quantify the added impact of using snow covered area (SCA) from MODIS during the assimilation of passive 

microwave snow depth observations.  

Average seasonal cycle of RMSE and Bias for snow depth 

from the open loop (OL) and DA integrations Differences in NSE of streamflow estimates from the use 

of MODIS SCA over passive microwave data alone 

The use of MODIS data provides systematic improvements in snow depth fields over the assimilation 
of passive microwave data alone.  

These improvements are translated to improvements in streamflow, especially in the western U.S.  



  
Assimilation of  remotely sensed terrestrial water storage measurements in 

the NLDAS (Univariate assimilation) 

Kumar, S.V., B. F. Zaitchik, C.D. Peters-Lidard, M. Rodell, R. Reichle, B. Li, M. Jasinski, D. Mocko, A. Getirana (2015), Assimilation of gridded GRACE terrestrial 

water storage estimates in the North American Land Data Assimilation System (NLDAS), to be submitted to Journal of Hydrology.  

This study examines an approach of assimilating terrestrial water storage (TWS) anomaly estimates from GRACE into the Catchment LSM 

using an Ensemble Kalman Smoother. The gridded GRACE TWS product is assimilated during a time period of 2003-2012.  

Anomaly R differences of surface soil moisture (top panel) 

and root zone soil moisture (bottom panel) from GRACE-DA 

relative to the open loop integration.  

(a) Surface soil moisture

(b) Root zone  soil moisture
Comparison of the drought percentile maps from the 

open loop and GRACE-DA integrations against the 

corresponding USDM estimate for Sept 18-25, 2012. 

GRACE-DA helps to reduce the overestimation of 

drought severity in the OL over Minnesota, Iowa, 

Wyoming and increases the severity of drought over 

Kansas and Oklahoma, consistent with USDM.  
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Figure 11. Comparison of the drought percent ile maps from open loop (middle column) and

DA-TWS (right column) integrat ions against the corresponding USDM est imate (first column)

for four representat ive cases.
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USDM 

GRACE-DA OL 

GRACE-DA has a positive impact on the simulation of unconfied groundwater variability and on the 
simulation of surface soil moisture.  

GRACE-DA also help to improve model derived drought estimates  



  
Multivariate assimilation in the NLDAS 

A unique ‘land reanalysis’ that concurrently assimilates soil moisture (SMMR, SSMI, AMSR-E, ASCAT), snow depth (SMMR, SSMI, AMSR-E), 

snow cover (IMS, MODIS), TWS (GRACE) and irrigation intensity (MODIS) into Noah and CLSM land surface models in the NLDAS 

configuration from 1979-2012.  

For Noah LSM, the improvements in soil moisture fields are small with degradations in the western U.S. In CLSM, more 

significant improvements in both surface and root zone fields are observed, possibly due to the influence of GRACE-DA.  

Root zone soil moisture  
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Multivariate assimilation in the NLDAS 

A unique ‘land reanalysis’ that concurrently assimilates soil moisture (SMMR, SSMI, AMSR-E, ASCAT), snow depth (SMMR, SSMI, AMSR-E), 

snow cover (IMS, MODIS), TWS (GRACE) and irrigation intensity (MODIS) into Noah and CLSM land surface models in the NLDAS 

configuration from 1979-2012.  

No
ah

CL
SM

RMSE Bias

For Noah, Snow depth fields are generally improved, with biases significantly reduced during the peak snow season. For CLSM, the 

improvements in snow depth fields are minor. DA leads to marginal improvements in bias during the late winter and melt periods.  

For Noah, generally improvements in streamflow simulation are observed in most parts of the domain. Notable degradations are in the 

Western U.S. For CLSM, degradations observed in the eastern parts of the domain with improvements over Missouri, Northwest, parts of 

Northeast.  

Noah

CLSM

Snow depth (RMSE) 
Change in NSE of streamflow 

 (warm colors indicate improvements) 



  
Land Data Assimilation : Challenges 

• Human impacts due to expansion of infrastructure and agriculture have 

significantly transformed (> 50%) the natural features of the land surface 

• e.g. irrigated agriculture, urbanization, deforestation 

• Current LSMs are limited in representing impacts of such engineered artifacts.  

• Can modern soil moisture remote sensing data detect such unmodeled features?  

• Are the DA methods effective in incorporating such signals?  
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Kumar, S.V. et al. (2015), Evaluating the utility of modern soil moisture remote sensing retrievals over irrigated areas and the 
suitability of data assimilation methods to correct for unmodeled processes, submitted to HESS.  



  
Comparing distributions from satellite soil moisture 

retrievals 

Kolmogorov Distance from the comparison 

of soil moisture distributions from the land 

model and satellite retrievals 

Figure 1. MODIS-based irrigated gridcell fraction (%) map of Ozdogan and Gutman (2008) over the conti-

nental U.S. The boxes (outlined in red color) highlight three known areas with large scale seasonal irrigation.

The yellow triangle in the inset indicates the location of the grid cell used in point scale land surface model

simulations.

22

The skill of the satellite retrievals in representing irrigation artifacts is mixed, with ASCAT based products somewhat more skillful than 

SMOS and AMSR2.  



  
Impact of  a priori bias correction strategies in 

representing unmodeled processes  

Standard bias correction practice in LDA is to rescale the observations to the model 

climatology. When unmodeled processes are involved, this approach leads to the loss of 

valuable signals.   
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LIS – an environment for interoperable land surface modeling and data assimilation 

Significant advances has been made in LDA towards multivariate assimilation of remote sensing 

data 

An interoperable environment (multiple observation types, multiple LSMs, multiple algorithms) 

for LDA 

Suited for both sequential and reanalysis simulations 

Supports a large suite of retrievals products and their concurrent assimilation 

 

Significant gaps and challenges 

Land is more heterogeneous (compared to atmosphere and ocean) and the skill of the retrieval 

products must be improved 

LDA methods must be improved to overcome the limitations in representing unmodeled 

features. Possible solutions include more data-driven approaches (deep learning). 

The biases in the models must also be reduced. Development of LSMs must include more 

“observable” outputs.  

Extend multivariate DA to exploit complementary information across sensors (temperature, soil 

moisture, vegetation) 

Summary 


