## **JULES-crop**

Tom Osborne, Josh Hooker, Tim Wheeler – University of Reading, UK Jemma Gornall, Andy Wiltshire, Pete Falloon, Richard Betts – UK Met Office





National Centre for Atmospheric Science



# Why?

### Not *another* crop model. What's new?

- Coupled to atmosphere
  - Improve simulation of land surface for climate model
  - Fully coupled impact assessment
- Global application
- Biophysical consistency with other land-surface processes

Land surface can affect climate.



Koster *et al* (2004)

Crops now a significant component of land surface





Data taken from: Ramankutty and Foley 1999

#### Atlas of the Biosphere

Center for Sustainability and the Global Environment University of Wisconsin - Madison

Ramankutty and Foley (1999)

#### Especially so in particular regions





#### Ramankutty and Foley (1999)



#### Crops differ to "natural" vegetation ...



McPherson et al. (2004)

#### ... leading to differences in near-surface climate (e.g. max daily air temperature)



McPherson et al. (2004)

#### Including explicit crop parameterisation improves simulation of land-surface fluxes



JULES-sucros: van den Hoof et al (2011) Agr. For. Meteor.

Growing crops in a climate model can feedback on to simulated climate variability.



#### Response of vegetation to environment can affect climate.





FACE: Free Air CO<sub>2</sub> enrichment

Long et al (2006)

Fraction of total surface warming (warming caused by the combined CO2-radiative and physiological effects) associated with the physiological forcing of CO2.





### **Development of JULES-crop**

Aims:

- 1) Improved representation of land surface in cropped regions.
- 2) Physically consistent prediction of crop yields under variable environmental conditions.

### **Development of JULES-crop**

Aims:

- 1) Improved representation of land surface in cropped regions.
- 2) Physically consistent prediction of crop yields under variable environmental conditions.

Challenges:

- Representing the wide variety (175, Monfreda *et al*) of crops

   Crop Functional Types.
- 2) Generic parameterisation suitable for all crop types.
- 3) Parameterisation of management (non-climatic influences)

# **Crop Functional Types**

| PHOTO<br>SYNTHESIS | PHOTO<br>SENSITIVITY   | C/L/O  | OTHER        | CFT | EXAMPLE                   |
|--------------------|------------------------|--------|--------------|-----|---------------------------|
| C <sub>3</sub>     | LONG DAY<br>SENSITIVE  | CEREAL |              | 1   | WHEAT, BARLEY, RYE, OAT   |
|                    |                        | LEGUME | OILSEED      | 2   | GROUNDNUT                 |
|                    |                        |        | NOT          | 3   | LENTIL, CHICKPEA, DRYBEAN |
|                    |                        | OTHER  | ROOT / TUBER | 4   | POTATO, SUGARBEET         |
|                    |                        |        | NOT          | 5   | RAPE                      |
|                    | SHORT DAY<br>SENSITIVE | CEREAL |              | 6   | RICE                      |
|                    |                        | LEGUME |              | 7   | SOYBEAN                   |
|                    |                        | OTHER  | ROOT / TUBER | 8   | CASSAVA, SWEET POTATO     |
|                    |                        |        | NOT          | 9   | COTTON                    |
| C <sub>4</sub>     |                        | CEREAL | SMALL GRAIN  | 10  | SORGHUM, MILLET           |
|                    |                        |        | LARGE GRAIN  | 11  | MAIZE                     |
|                    |                        | OTHER  |              | 12  | SUGARCANE                 |

## **Generic parameterisation**



### Development Index (DVI)



But, complicated by daylength, vernalisation, high temperatures

### Partitioning of NPP























1.5

2.0

0.0

0.5









1.0

1.5

20

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.5

1.0

# Site evaluation: Mead, NE

Ø2011 Google - Imagery ©2011 DigitalGlobe, GeoEye, U.S

Pioneer State Recreation Area

Geolog

66

Service Adency

66

©201

Goodle - Terms of

77











JULES-crop (GSWP) - Obs



- Different time periods
- Maize varieties
- Yield Gap
- It's a model

### Evaluation of planting date



200 grid cells with largest fractional coverage in Monfreda et al dataset.



Earlier planting of crops in US: part climate, part technology



Sacks and Kucharik (2011)

- JULES-crop technically works. But:
- Does it meet its duel aims?
  - Too many CFTs for weather and climate models
  - Not crop-specific for impacts
- Still a need to properly calibrate and validate.
  - Sufficient data to do both properly and independently
  - Depends on intended use (local v global, NWP v impacts)





National Centre for Atmospheric Science

