

# Photosynthesis limiting regimes



Andrea Manrique-Suñén, Emily Black, Anne Verhoef, Gianpaolo Balsamo and Gregorio Egea

JULES Scientific Meeting Leicester, 1-2/7/2014

## Plants and environmental factors

- Plants are living organisms
- Plant processes affects carbon, water and energy cycles.

 $\mu$ molC m $^{-2}$  s $^{-1}$ 

- Diurnal and seasonal cycles are controlled by
  - environmental factors
  - > genotype



Hours





GPP, Hyytiala 1998

# Photosynthesis limiting regimes







**RuBP**: Ribulose 1,5 bisphosphate Rubisco: Ribulose bisphosphate carboxylase /oxygenase PGA: Phosphoglyceric acid

# Photosynthesis limiting regimes



### **1.** CO<sub>2</sub> limited rate

$$W carb = \begin{cases} V_{cmax} \left( \frac{c_i - \Gamma}{c_i + K_c + \left( 1 + \frac{O_a}{K_o} \right)} \right) & for \ C_3 \\ V_{cmax} & for \ C_4 \end{cases}$$

V<sub>cmax</sub>: max rate of carboxylation of Rubisco

- c<sub>i</sub>: Internal CO<sub>2</sub> partial pressure
- O<sub>a</sub>: Partial pressure of O<sub>2</sub>
- $\Gamma$ : Compensation point

K<sub>c</sub>, K<sub>o</sub>: Michelis-Menten parameters

### 2. Light limited rate

$$W_{lite} = \begin{cases} \alpha(1-\omega)I_{par}\left(\frac{c_i-\Gamma}{c_i+2\Gamma}\right) & for \ C_3\\ \alpha(1-\omega)I_{par} & for \ C_4 \end{cases}$$

α: Quantum efficiency of photosynthesis
I<sub>par</sub>: Incident photosyntetically active
radiation
ω: leaf scattering coefficient

3. Rate of transport of photosynthetic products (C<sub>3</sub>) and PEPCarboxylase limitation (C<sub>4</sub>)

$$We = \begin{cases} 0.5 V_{cmax} & for C_3 \\ 2 \times 10^4 V_{cmax} \left(\frac{c_i}{P_*}\right) & for C_4 \end{cases}$$

P<sub>\*</sub>: Surface air pressure

Clark D. B. et al. (2011)



## Other factors affecting photosynthesis

- 4. Soil water availability
- 5. Nutrient availability
- 6. Temperature





# $V_{\text{cmax}}\text{, } \ensuremath{\mathit{\Gamma}}\text{, } K_{\text{c},} \ensuremath{\mathit{K}}\xspace_{\text{o}}$ depend on temperature



### The CO<sub>2</sub> response curve



**Demand function**: Determined by the processing of CO<sub>2</sub> in the chloroplasts

**Supply function:** Determined by the diffusion of CO<sub>2</sub> to the chloroplasts

Figure: Lambers, Plant Physiological Ecology



## Gas exchange at leaf level



A-g<sub>s</sub> models 
$$g_{sc} = \frac{A_n(PAR, C_a, T...)}{C_s - C_i}$$
  $g_s = 1.6g_{sc}$ 



# Under which conditions does each limiting regime dominate?

JULES **photosynthesis scheme at the leaf level** was run for:

- Leaf temperature [0 -50 °C]
- Photon flux density  $[0 1600 \mu mol m^{-2} s^{-1}]$
- Atmospheric CO<sub>2</sub> [340 -400 ppm]
- All PFTs

No restrictions on soil water availability ( $\beta$ =1)

Aerodynamic conductance set to a constant value (g<sub>a</sub>=0.075 m s<sup>-1</sup>)

$$g_{sc} = \frac{A_n(T, PPFD, C_a, \dots)}{C_s - C_i}$$



CO<sub>2</sub> response curve and Plant Functional Types



T leaf =  $30^{\circ}$ C PPFD =  $1500 \mu$ mol m<sup>-2</sup> s<sup>-1</sup>

 For all PFTs CO<sub>2</sub> limiting regimes dominates photosynthesis at high radiation

ΒL

NL

C3

C4

sh

### Light response curve pft=1 Anetl - Wlite - Wexpt ····· Wcarb – Tleaf = 20C – Tleaf = 10C - Tleaf = 30C

1000

25

20

15

10

5

0

Light

limited

200

400

600

**Carbon** limited

Export limited (T<10°C)

PPFD (umol m-2 s-1)

800

(umol m-2 s-1)

Light limited: For low light intensities A increases linearly with irradiance. Light limited regime dominates for a longer period for higher temperatures

University of **Reading** 

CO<sub>2</sub> limited: At high irradiance, photosynthesis becomes light saturated, and is limited by the carboxylation rate

Export limited: Only becomes limiting for temperatures below 10 °C

## PPFD-Leaf T (Broadleaf)





CO<sub>2</sub> limited regime dominates the total photosynthetic rate Light limiting regime limits for low radiation Export limited regime slightly limits for low temperatures

## PPFD-Leaf T (Broadleaf)





An increase in ambient  $CO_2$  increases mainly the  $CO_2$  assimilation for the  $CO_2$  limiting regime, resulting in increased influence of light limiting regime

### PPFD-Leaf T (C4 grass)





Light limiting regime does not vary with temperature CO2 limiting regime dominates less than for C3 photosynthesis

### PPFD-Leaf T (C4 grass)





For C4 photosynthesis, an increase in ambient CO<sub>2</sub> only affects Wexpt



### **Overview**

- The influence of environmental factors in photosynthesis is accounted for in models by limiting regimes
  - > CO<sub>2</sub> limiting regime Represents the main limitation
  - Light limiting regime Dominates at low irradiances
  - > Export limiting regime- Only is important for low temperatures
- An increase in atmospheric CO<sub>2</sub>
  - In C3 species increases the carboxylation rate, which results in a increased influence of light limiting regime, and higher leaf photosynthetic rate
  - In C4 species does not change the influence of limiting regimes and does not change the leaf photosynthetic rate.



# Thank you

#### **Bibliography**:

Clark D. B., L. M. Mercado, S. Sitch, C. D. Jones, N. Gedney, M. J. Best, M. Pryor, G. G. Rooney, R. L. H. Essery, E. Blyth, O. Boucher, R. J. Harding, C. Huntingford, P. M. Cox (2011) "The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics" *Geoscientific Model Development* 4 (3) p. 701-722

Farquhar, G. D. et al. (1980). "A biochemical model of photosynthetic CO<sub>2</sub> assimilation in leaves of C<sub>3</sub> species ". Planta 149, 78-90.

Jacobs, C. M. J. (1994). Direct impact of atmospheric CO2 enrichment on regional transpiration (p. 179). Wageningen Agricultural University, The Netherlands.

Lambers H., Chapin F., Pons T. L., "Plant Physiological Ecology", Springer