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Sequential e

e Start of a number of model runs

* Add independent stochastic forcing to state
vector of each run at predefined intervals
— represents model error

* When observations are available, resample
the ensemble according to some algorithm

— e.g. Ensemble Kalman Filter, Sequential
Importance Resampling etc.



http://terpconnect.umd.edu/~baforman/



Leaves individual model state vectors intact
(i.e. no statistical “blending”)

Analysis step makes no assumption about
probability distribution of ensemble

— Fully Bayesian solution to sequential DA problem
Suitable for extremely non-linear models
Easily implemented...
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Wahyu Caesarendra, Gang Niu, Bo-Suk Yang, Machine condition prognosis based on sequential Monte Carlo
method, Expert Systems with Applications, Volume 37, Issue 3, 15 March 2010, Pages 2412-2420.



Metropolis

Loop over all particles, x
Xx* = random particle

y = observations _
a=min |1,

L(y|x*)

Draw z from U(0,1)

L(y|x)

if z<a
if 2> a
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Assimilatin

Observations
Data Assimilation Scheme
(KF, EnKF, 4DVAR, etc)
=TT TN
: N\ :
T l N Assumptions ~ ¢—— Observations
MODEL (JULES) I
=TT TS
/ . N\
\ Assumptions _ _
~ o _ - For example: soil moisture
— from SMOS or photosynthesis

(GPP) from MODIS



, (Trin, vPD 5 MODIS data
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- Maintenance Respiration &= |
! fine root !
| mass :
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*does not include growth respiration or

live wood maintenance respiration costs I Dal |Y OUtPUtS

http://lwww.ntsg.umt.edu/remote_sensing/netprimary/



Assimilating

Data Assimilation Scheme |4
(KF, EnKF, 4DVAR, etc)

T l \ Observations

Observations

Observation Operator
-_— T =
< Assumptions_ ~ e.g. reflectance,
T backscatter, etc...
\ 4
MODEL

” ~ N Quaife T, Lewis P, De Kauwe M, Williams M, Law BE,
/ Assumptions | Disney MI and Bowyer P (2008) Assimilating canopy
\ < - reflectance data into an ecosystem model with an

N —_—- Ensemble Kalman Filter. Remote Sensing of Environment.

112(4):1347-1364



S What data t

* |deal data streames:
— Energy incident at the satellite sensor.
— Have previously used TOC BRFs.

— But introduce lots of additional unknowns in the
OO which also have to be estimated.

* Compromise:
— Albedo, LST, brightness temperatures (long W/L)
— Avoid conflicting assumptions as far as possible.



e JULES uses a Sellers two-stream model

— Predicts spectral and direct/diffuse albedos
— This is estimated by EO albedo products (MCD43)

* Two options:
— Off-line/on-line assimilation

* Also implementing a sun angle implement a
structure factor after Pinty et al. (2006):

LAl ¢ = LAl x (p)



* JULES models a per tile skin temperature

* Currently we assume that this can be
compared directly with MODIS LST data

e Use MODIS QA to set uncertainties

* Future work will investigate angular
dependency of the LST observations and
potential to estimate surface emissivity
(currently a user defined parameter).
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Where next

* Current Python implementation is slow
* Needs to be much faster for large scale work

* EMPIRE

— Employing Message Passing Interface for
Researching Ensembles

— Uses MPI framework
— Already implemented with HadCM3
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EMPIRE: HadCM3
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Work with TA

Reqion: Africo
Feriod: Year 2014, Month 06, Dekad 2

T, a e« "% o Rainfall ensembles

. e ESA SM CCl data

] * Aim to provide full

N column soil water

9 * Feeds into to

) insurance algorithms
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The gecgraphical boundaries are purely a graphical representation and are only intended te be indicative.
These borders do not necessarly reflect the official EC pasition.



Implemented non-linear DA scheme for JULES
Demonstrated it for various EO data streams

Currently working on:
— MPI framework
— African soil moisture DA system

Questions?



esa-da.org







Sensitive to soil moisture and temperature

SM products make assumptions about soil
type which may not be consistent with JULES

Have implemented a microwave emission
model and coupled the JULES

Has not been used in the DA scheme yet
— Issues of spatial scale and depth of emission
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