

JULES Surface Module Updates

JULES Annual Science Meeting 2024 John Edwards, Rich Ellis

Met Office

Topics

- Anthropogenic Heating
- Snow
- Ancillary Data

Met Office Urban anthropogenic heat

Katty Huang, Andy Wiltshire, Maggie Hendry, Andy Hartley

What was done?

- New urban anthropogenic heat option (Flanner 2009): added diurnal cycle and latitude-dependent seasonal cycle
 - JULES ticket #1371, pending LFRic debugging
- Apply MORUSES urban roof-canyon representation in global UKESM simulations (N96 resolution, ~135km)
- Morphology parameters for MORUSES upscaled from empirical relationship (Bohnenstengel et al. 2011) calculated using1-km urban fractions

- **Impact on urban-rural T difference** (all model grids with urban fraction > 1%) lat > 33 |at < -33| $33 \ge \text{lat} \ge -33$ 2.0 anthroX3-anthro anthro-moruses 1.5 noruses-control 1.0 **A1.5m UHI (K)** 0.5 0.0 -0.5 -1.0-1.5MAM JJA SON DIF MAM IIA SON DIF MAM JJA SON DIF
- Urban heat island (UHI): difference in T between urban and non-urban tiles of the same model grid
- Minimal impact on the global median, but more geographical variability
 (orange boxplots)
- MORUSES produces significantly lower urban temperatures than 1-tile urban scheme (green boxplots)

UKESM AMIP simulations

Name	Urban representation	Anthropogenic heat	Baseline anthropogenic heat
control	1-tile	Fixed annual cycle	-
moruses	MORUSES	Fixed annual cycle	-
anthro	MORUSES	Flanner (2009)	20 W m ⁻²
anthroX3	MORUSES	Flanner (2009)	60 W m ⁻²

Shet Office Show

- Long-standing issue of negative snow in JULES: Occasionally up to -1.5 kgm⁻²
 - Incorrect formulation of melting main issue
 - Negative interception by an overloaded canopy
- "Fixed" under ticket https://code.metoffice.gov.uk/trac/jules/ticket/1396
 - L_fix_neg_snow \rightarrow .T.
- Two outstanding issues
 - Branch passed all tests, but subsequent crashes on some compilers and at single precision reported. Numerical issue
 - Associated move from melting rates to increments is not quite right
 - Both will be fixed under https://code.metoffice.gov.uk/trac/jules/ticket/1516
 - (Also needs a change in LFRic)
- Further development of the snow scheme planned in the near future

Ancillary Data - Mainly for users of the UM

- Land cover, leaf area index, canopy height... in gridded runs
- Historically generated by the Central Ancillary Programme (CAP)
- CAP has been replaced by ANTS
- Using ANTS there is ongoing work to improve gridded ancillary data for use in JULES. Topics include...
 - Wider range of land-cover data, e.g. CORINE over Europe
 - Support for the17-tile ESM configuration
 - We have UM ancillaries for 17 tiles
 - Standard testing in prospect

Met Office

C3 Vegetation in the UKV from CORINE on 17 tiles

