ExaJULES: Model development for a JULES LFRic app

EXCAL

Emma Robinson, Rich Ellis, Doug Clark UKCEH

Simon Wilson, David Livings, Dave Case, Bryan Lawrence, Grenville Lister NCAS

JULES Annual Science Meeting 5th September 2024

UK Centre for Ecology & Hydrology

LFRic and Momentum

- LFRic software infrastructure
 - Take advantage of next generation exascale platforms
 - Momentum to replace UM
 - GungHo: New dynamical core
 - Psyclone: Auto-generation of parallel code
 - Xios: New approach to i/o
- Forecasts running in parallel with UM
- ExCALIBUR SPF Weather & Climate Use Case supporting redesign of component model codes

UK Centre for Ecology & Hydrology

Separation of concerns Science code should be agnostic to how it's being called

JULES in LFRic

- JULES code is 'LFRic ready' in as much as it can be compiled as part of atmosphere BUT
 - Not good 'separation of concerns'
 - Different implementation for standalone vs atmosphere
 - JULES standalone can't take advantage of the LFRic technical advances
- LFRic technical infrastructure designed around 'core' and 'apps'

ExaJULES project will design a prototype JULES LFRic app

ExaJULES

Produce prototype app

- Benchmarking
- Performance improvements
- Coupling components on varying grids
- Engage with JULES and ExCALIBUR communities
- Apr 2023 Oct 2024

- Emma Robinson
- Rich Ellis
- Doug Clark

Atmospheric Science

- Bryan Lawrence
- Grenville Lister
- Simon Wilson
- Dave Case
- David Livings

Benchmarking

- Adapted JULES-PL benchmarking suite to run with new app
- Testing with selected sites
- Runs on JASMIN with singularity container
- Test runs bit compare with JULES standalone

1	🤪 u-dd816 - cylc1.jasmin.ac.u	k:43065					—		×
	<u>File View Control Suite H</u> elp								
	III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Connect Now	View 1:						
	task	state	host	job system	job ID	T-submit	T-start	T-finish	d 着
	7 <mark>F</mark> 1	running							_
	F BUILD	succeeded							
	▼ F JULES	running							
	📘 jules_FR-Lq2	queued	localhost	slurm	44103987	09:27:30Z	09:28:00Z	09:28:14Z	*
	🔲 jules_AU-Whr	queued	localhost	slurm	44103981	09:27:30Z	09:27:57Z	09:28:05Z	*
	jules_FR-Lq1	submitted	localhost	slurm	44104620	09:30:51Z	*	*	*
	🔲 jules_US-Ton	queued	localhost	slurm	44103990	09:27:30Z	09:28:13Z	09:28:22Z	*
	📃 jules_ES-LMa	queued	localhost	slurm	44103984	09:27:30Z	09:27:59Z	09:28:12Z	*
	🔲 jules_AU-How	queued	localhost	slurm	44103980	09:27:30Z	09:27:47Z	09:27:56Z	*
	📃 jules_DE-Meh	queued	localhost	slurm	44103983	09:27:30Z	09:27:57Z	09:28:06Z	*
	📃 jules_CN-Cha	queued	localhost	slurm	44103982	09:27:30Z	09:27:57Z	09:28:07Z	*
	🔲 jules_US-Me2	queued	localhost	slurm	44103988	09:27:30Z	09:27:57Z	09:28:05Z	*
	🔲 jules_ES-LgS	queued	localhost	slurm	44103985	09:27:30Z	09:27:58Z	09:28:06Z	*
	🔲 jules_US-Me6	queued	localhost	slurm	44103989	09:27:30Z	09:27:57Z	09:28:05Z	* 🗸
	4								▶
	running to stop at 1	(filtered:) live			202	24-09-02T10	:30:51+01:	00 🤷

Performance and optimisation

- Aim: identify and seize optimisation opportunities
- JULES is embarrassingly parallel (except rivers)
- Inherits UM parallelisation strategy (MPI, land vector)
- Standalone is I/O limited
- Use Intel Advisor tool on Archer and JASMIN to identify possible code improvements

Roofline plot for loops in JULES

Ecology & Hydrology

Operational intensity (FLOPS/Byte)

Outcomes

- Identified code changes to improve performance
 - calc_fsat worst performance code changes can lead to 20-25% improvement
 - **root_frac_jls** less important overall bigger relative improvement of 60%
- More scope for improvement by changing compiler optimisation flags
 - But these will change results
- Have identified possible changes to compiler flags on JASMIN (~30% speed up)
- Will investigate the upcoming changes on JASMIN (new OS, new intel compiler)
- Should continuously monitor performance with code/optimisation changes
- New project NG-ARCH will be investigating parallelisation for W&C codes

Coupling on multiple meshes

- Investigate options for coupling land to atmosphere on different meshes
- Informed by Hydro-JULES / UnifHy work

Recommendations

→ Task-based parallelisation
→ Interaction of tiles and gridboxes
→ Need exchange grid / supermesh to handle non-linear processes
→ Combine with formal coupling

Lo we rBo un da ry Conditions

Prototype JULES app

Potential benefits:

- Shared technical infrastructure
- Simplified pull through of science from JULES to coupled model
- Allows JULES to exploit developments in supercomputer infrastructure
- Potential performance gains

Potential concerns:

- Technical overhead for running standalone
- Does it simplify development?
- Coupling and parallelisation

Next steps

- ExaJULES...
 - Merge changes to latest LFRic/JULES versions
 - Create tickets to get infrastructure into trunk
- ...and beyond
 - Work towards consistent calling code in standalone and atmosphere
 - Finish interpolation and other outstanding issues
 - Consider different options for coupling to atmosphere
 - Liaise with JULES standalone users

- Early prototyping of standalone JULES in LFRic
- Exploring options for future development
- No immediate change to JULES working practices
- Any future change to be supported with required training

Thank You

For more information please contact: emrobi@ceh.ac.uk

UK Centre for Ecology & Hydrology

This Photo by Unknown Author is licensed under CC BY-SA