

Implementing the acclimation of photosynthesis and leaf respiration in the Noah-MP land surface model

Yanghang Ren, Han Wang, Sandy P. Harrison, I. Colin Prentice,

Giulia Mengoli, Long Zhao, Peter B. Reich, Kun Yang

4. Sep. 2024

Background

Realistic simulation of leaf photosynthetic and respiratory processes is needed for accurate prediction of the global carbon cycle.

- Plant leaves absorb CO₂ through **photosynthesis** (123 PgC yr⁻¹, globally).
- About a quarter CO₂ absorption (30 PgC yr⁻¹) was released to the atmosphere by leaf respiration.
- Changes in leaf respiration and photosynthesis would significantly modify the **global carbon balance**.

Background Plant photosynthesis and respiration acclimate to long-term environmental changes by adjusting photosynthetic and respiratory traits with increasingly well-understood principles.

Eco-Evolutionary Optimality-based predictions

However, acclimation is still not routinely considered in land surface models (LSMs).

- LSMs conventionally assumed a constant R₂₅ and V_{cmax,25} by plant functional types (PFTs).
- Calibration of PFT-dependent parameters together with model structures results in **disagreement among LSMs** in projections of the carbon cycle at regional or global scales.

This study implemented EEO-based schemes representing the acclimation of photosynthesis and leaf respiration in the Noah MP LSM.

• Model development:

model description, experimental design, the forcing and benchmark data

Evaluation:

traits variations, carbon flux variations

Model description

H₂O from Soil Photosynthate

(C₆H₁₂O₆, etc)

Model description

 $\Box \ GPP = \min(A_{\rm C}, A_{\rm J})$ $A_{C} = \begin{cases} V_{cmax} \cdot \frac{c_{i} - \Gamma^{*}}{c_{i} + K}, & C3 \ plant \\ V_{cmax}, & C4 \ plant \end{cases}$ $A_{J} = \begin{cases} \frac{J}{4} \cdot \frac{c_{i} - \Gamma^{*}}{c_{i} + 2\Gamma^{*}}, & C3 \ plant \\ \frac{J}{4}, & C4 \ plant \end{cases}$

$\square R_{canopy} = R_{25} \cdot f_r(T) \cdot LAI$

	Standard Noah-MP scheme	EEO-based scheme	
C _i	Numerical iteration	Least-cost hypothesis	
Vcmax,25	PFT parameters	Coordination hypothesis	
J max,25	Infinity	Coordination hypothesis	
R 25	PFT parameters	R-Vcmax coupling	

EEO-based scheme

→C'

Model description: New hypothesis of leaf respiration acclimation

R and carboxylation capacity (V_{cmax}) at 25°C (R_{25} , $V_{cmax,25}$) are coordinated, so that R_{25} variations support $V_{cmax,25}$ at a level allowing full light use; with $V_{cmax,25}$ reflecting daytime conditions (for photosynthesis), and the ratio of R_{25} to $V_{cmax,25}$ reflecting night-time conditions (for starch degradation and sucrose export).

*R*d and *V*cmax are coordinated

(Ren et al., 2023, New Phy) 8

Model description: New hypothesis of leaf respiration acclimation

 R_{25} is jointly controlled by V_{cmax} and T_{night} •

(Ren *et al.,* 2023, *New Phy*)

Model description: New hypothesis of leaf respiration acclimation

• The acclimation time scale of R_{25} is about 15 days (consistent with $V_{cmax,25}$).

Fig. Estimating the acclimation time scale of leaf respiration (a-b)).

Model description

EEO-based scheme:

- ✓ less parameters (12 PFT-dependent → 3 PFTindependent)
- less computationally demanding (No numerical iteration)

	Standard Noah-MP scheme	EEO-based scheme	
Ci	Numerical iteration	Least-cost hypothesis	
V cmax,25	PFT parameters	Coordination hypothesis	
J max,25	Infinity	Coordination hypothesis	
R 25	PFT parameters	R-Vcmax coupling	

Flowchart of the trait-acclimation scheme incorporated in Noah MP

(Mengoli et al., 2022, *JAMES*; Ren *et al.*, 2023, *New Phy*) 11

Experimental design

Two sets of model experiments:

- a. The standard Noah MP scheme
- b. The new EEO-based scheme

Simulation design:

- Time step: half hour
- Spin up: one loop
- Simulation sites:
 FLUXNET2015 sites; field trait-measurement sites
- Simulation periods: over 1200 site years
- Forcing: observed or WFDE5-based climate forcings
 + satellite LAI + observed atmospheric CO₂

Module options used in the two experiments

	Modules	EEO scheme	Standard scheme
	GPP and <i>R_{canopy}</i> (canopy carbon flux)	Trait acclimation	Static PFT-dependent (Ball-Berry module)
	Dynamic vegetation	Use LAI input	
	Soil moisture limitation	Noah	
Runoff and ground water TOPMODE		EL with groundwater	
	Surface layer drag coefficient Monin-Obukho		khov similarity theory
	Supercooled liquid water	No iteration	
	Frozen soil permeability	Linear effects	
	Radiation transfer	Two-stream applied to vegetated fraction	
	Ground snow surface albedo	CLASS	
s L	Snow-rain partitioning	Jordan, 1991	
	Lower boundary condition of soil temperature	TBOT at ZBOT (8m) read from a file	
5	Snow/soil temperature time scheme	Semi-implicit	
	Surface resistance to evaporation/sublimation	Sakaguchi & Zeng, 2009	
	Glacier	Phase change	
	Defining soil properties	Use domin	ant soil texture input

Benchmark data

Trait (*V*_{cmax,25} **and** *R*₂₅**):**

- extensive global field measurement
 (LCE: Smith & Dukes 2017; GlobResp: Atkin *et al.*, 2015)
- a five-year warming experiment
 (B4WarmED: Reich *et al.*, 2021)

more than 2000 paired measurements at 53 sites globally

Carbon flux:

- GPP: 168 FLUXNET sites covering 12 PFTs,
 - 1200 site-years observations
- R_{canopy} : upscaled from single leaf measurement of R_{25} to canopy level (R_{canopy} =LAI· R_{25} · $f_r(T)$)

Locations of the 53 trait-measurement sites and the 168 FLUXNET sites

Result 1: Simulation of Trait Variations

Observed $V_{cmax,25}$ and R_{25} displayed substantial variability temporally and spatially within each PFT.

- The standard scheme with constant parameter values cannot be expected to reproduce the observed seasonal variability
- The new EEO-based scheme reasonably well captured both seasonal and latitudinal variation (R² of 0.7 for R₂₅ and 0.6 for V_{cmax,25})

Figure Variations in R_{25} and $V_{cmax,25}$ for the specific PFT

Result 2: Evaluation of Carbon Flux Variations-GPP

 EEO-based scheme successfully reproduced the variations in half-hourly GPP at the 12 FLUXNET sites (higher median R²: 0.86 (standard scheme) to 0.94 (EEO-based scheme); lower median RMSE: 3.6 to 2.4 μmol CO₂ m⁻² s⁻¹)

Figure Half-hourly GPP at 12 FLUXNET sites at which field trait were measured.

Result 2: Evaluation of Carbon Flux Variations-GPP

Across all the FLUXNET2015 sites, the EEO-based scheme performed better than the standard scheme in predicting GPP variations at the half-hourly, monthly, and annual scales.

- Improve the underestimation (10.1% \rightarrow 2.4%)
- Higher accuracy (R^2 : 0.57 \rightarrow 0.66;

RMSE: 33.6 to 19.6 µmol CO₂ m⁻² month⁻¹)

Result 2: Evaluation of Carbon Flux Variations-*R*_{canopy}

- Standard scheme produced an excessive CO_2 release from leaf respiration, and overestimated measured R_{canopy} by more than twice.
- EEO-based scheme produced a more R_{canopy} with a maximum bias of 10%.

Take home messages

- The EEO-based scheme produces more realistic simulations of GPP and R_{canopy} which are underestimated and overestimated respectively in the standard scheme. \rightarrow result in less net CO₂ uptake by land ecosystems using the standard scheme.
- The EEO-based scheme captures most of the variation of photosynthetic and respiratory traits across different locations and over time.
- The EEO-based scheme has fewer parameters than the standard one and is simple to implement. The new scheme is also less computationally demanding as it avoid the need for iterative solutions.

Flowchart of the trait-acclimation scheme incorporated in Noah MP

LEMONTREE Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts

Thanks for your attention!

ryh21@mails.Tsinghua.edu.cn

