

TroPeaCC project (ERC)

Modelling the effects of water table dynamics on microbial methane emissions: focus on the tropics

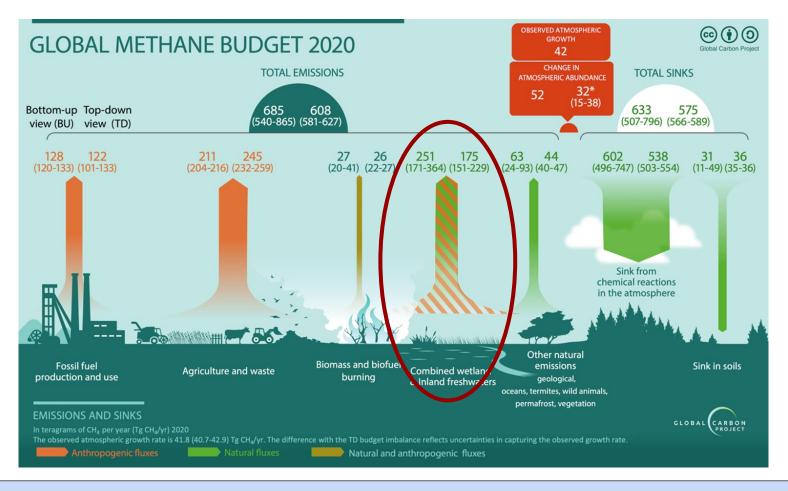
j.bernard@exeter.ac.uk

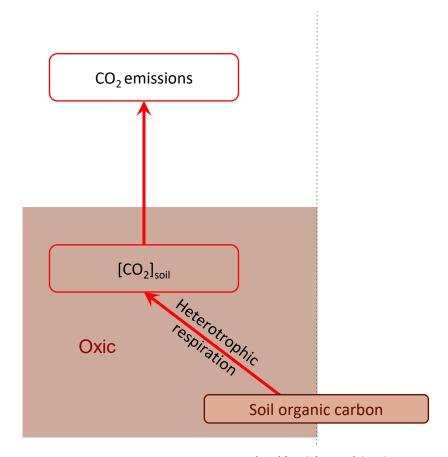
Juliette Bernard, Eleanor Burke, Sarah Chadburn, Angela Gallego-Sala, Nicola Gedney, Jorge Ramirez, Janice Liu.

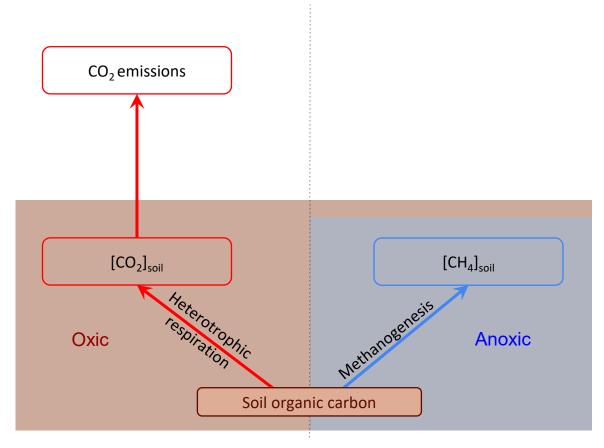
Site collaborators: Paola Alarcon, Juan C. Benavides, Rodney A. Chimner, I. Chesney, Alejandro Delgado, Chandra S. Deshmukh, Jenny Farmer, Timothy J. Griffis, Takashi Hirano, Charles Jjuuko, Carol Kagaba, Frank Kansiime, Joerg Kaduk, Erik Lilleskov, D. Tyler Roman, Daniel M. Ricciuto Caroline Signori-Muller et FengHui Yuan.

TroPeaCC project (ERC)

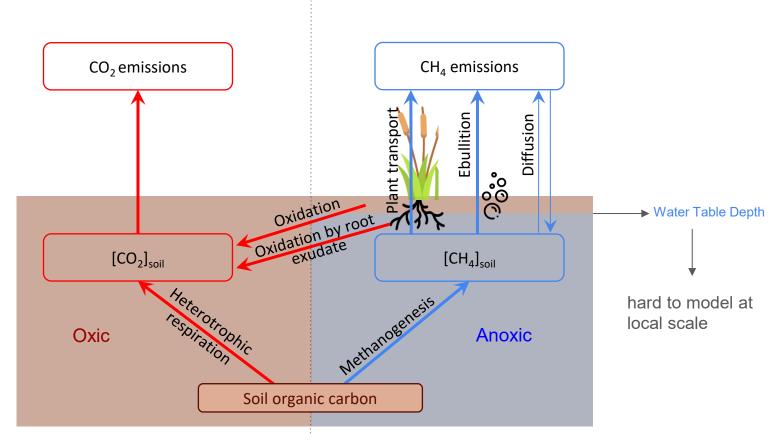
Modelling the effects of water table dynamics on microbial methane emissions: focus on the tropics


UNDER CONSTRUCTION


j.bernard@exeter.ac.uk


Juliette Bernard, Eleanor Burke, Sarah Chadburn, Angela Gallego-Sala, Nicola Gedney, Jorge Ramirez, Janice Liu.

Site collaborators: Paola Alarcon, Juan C. Benavides, Rodney A. Chimner, I. Chesney, Alejandro Delgado, Chandra S. Deshmukh, Jenny Farmer, Timothy J. Griffis, Takashi Hirano, Charles Jjuuko, Carol Kagaba, Frank Kansiime, Joerg Kaduk, Erik Lilleskov, D. Tyler Roman, Daniel M. Ricciuto Caroline Signori-Muller et FengHui Yuan.


authors by alphabetic order

adapted from Salmon et al. (2022)

adapted from Salmon et al. (2022)

Wetland methane emissions in JULES

Climate feedback from wetland methane emissions

N. Gedney

Hadley Centre, Met Office, Joint Centre for Hydro-Meteorological Research, Wallingford, UK

P. M. Cox

Hadley Centre, Met Office, Exeter, UK

C. Huntingford

Centre for Ecology and Hydrology, Wallingford, UK

The Sensitivity of Global Climate Model Simulations to the Representation of Soil Moisture Heterogeneity

N. GEDNEY AND P. M. COX

Hadley Centre, Met Office, Bracknell, Berkshire, United Kingdom

(Manuscript received 19 December 2002, in final form 18 June 2003)

OPEN ACCESS

RECEIVED

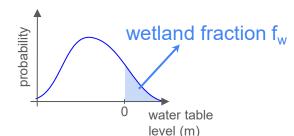
18 December 2018

29 April 2019

5 June 2019

PUBLISHED 2 August 2019 LETTER

Significant feedbacks of wetland methane release on climate change and the causes of their uncertainty


N Gedney^{1,4}, C Huntingford², E Comyn-Platt² and A Wiltshire³

- Met Office Hadley Centre, Joint Centre for Hydrometeorological Research, Maclean Building, Wallingford OX10 8BB, United Kingdom
- ² Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
- Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, United Kingdom
- Author to whom any correspondence should be addressed.

E-mail: nicola.gedney@metoffice.gov.uk

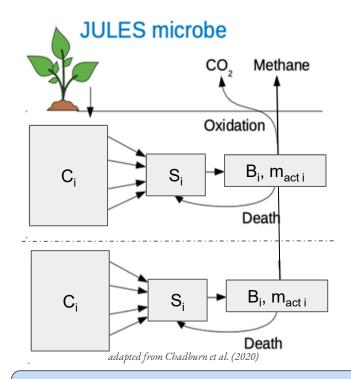
per pixel :

Soil organic carbon C

Soil temperature T

$$F_{CH_4} = f_w \sum_{layer=i} kC_i Q_{10}(T)^{(T-T_0)/10} e^{-\tau z_i} dz_i$$

→ in JULES, methane emissions are driven by wetland fraction, soil carbon, and temperature


JULES-microbe

Modeled Microbial Dynamics Explain the Apparent **Temperature Sensitivity of Wetland Methane Emissions**

Sarah E. Chadburn¹, Tuula Aalto², Mika Aurela², Dennis Baldocchi³, Christina Biasi⁴, Julia Boike^{5,6} , Eleanor J. Burke⁷ , Edward Comyn-Platt⁸, A. Johannes Dolman⁹, Carolina Duran-Rojas¹, Yuanchao Fan^{10,11}, Thomas Friborg¹², Yao Gao² (D), Nicola Gedney¹³, Mathias Göckede¹⁴, Garry D. Hayman¹⁵ (D), David Holl¹⁶ (D), Gustaf Hugelius¹⁷ (D), Lars Kutzbach¹⁶ [0], Hanna Lee¹⁰ [0], Annalea Lohila^{2,18} [0], Frans-Jan W. Parmentier^{19,20} [0], Torsten Sachs²¹, Narasinha J. Shurpali²², and Sebastian Westermann¹⁹

Received 22 MAY 2020 Accepted 19 OCT 2020 Accepted article online 31 OCT 2020

JULES-microbe

Modeled Microbial Dynamics Explain the Apparent **Temperature Sensitivity of Wetland Methane Emissions**

Sarah E. Chadburn¹ D. Tuula Aalto², Mika Aurela², Dennis Baldocchi³ D. Christina Biasi⁴ D. Julia Boike5,6 D. Eleanor J. Burke7 D. Edward Comvn-Platt8, A. Johannes Dolman9 D. Carolina Duran-Rojas¹, Yuanchao Fan^{10,11}, Thomas Friborg¹², Yao Gao², Nicola Gedney¹³, Mathias Göckede¹⁴, Garry D. Hayman¹⁵ , David Holl¹⁶ , Gustaf Hugelius¹⁷ Lars Kutzbach 16 D, Hanna Lee 10 D, Annalea Lohila 2,18 D, Frans-Jan W. Parmentier 19,20 D, Torsten Sachs²¹ O, Narasinha J. Shurpali²² O, and Sebastian Westermann¹⁹

Received 22 MAY 2020 Accepted 19 OCT 2020 Accepted article online 31 OCT 2020

C: soil Carbon measured (site) or JULES

S : soil substrate

B: methanogenic biomass m_{act}: methanogenic activity

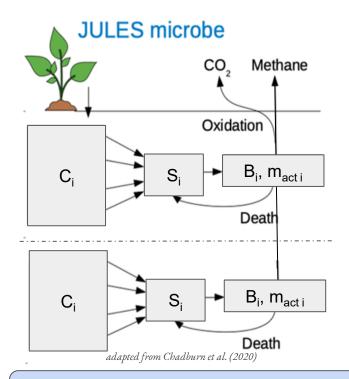
in each soil layer i:

$$\frac{dS}{\mathrm{d}t} = C \ dissolution - methanogenesis - hetertrophic \ resp$$

$$= k_1 Q_1^{0.1 \frac{T}{1-T/T_0}} C_3^{\frac{2}{3}} - k_2 Q_2^{0.1 \frac{T}{1-T/T_0}} \phi B m_{act} - \xi \ S$$

$$\frac{dB}{\mathrm{d}t} = growth - death - maintenance \ resp$$

$$= (fk_2 \phi B m_{act} - k_d B m_{act} - \alpha k_2 B) Q_2^{0.1T/(1-T/T_0)}$$


$$\frac{d_{mact}}{\mathrm{d}t} = \pm f \ k_2 \ A_2 \ m_{act} + \text{if growth} > \mu$$

$$- \text{if not}$$

$$F_{CH4} = f_w \sum_{i} F_{CH4, i} e^{-\tau z_i} dz_i = f_w \sum_{i} \frac{1}{2} k_2 Q_2^{0.1 \frac{T}{1 - T/T_0}} \phi B m_{act} e^{-\tau z_i} dz_i$$

→ goal: to represent the **microbial community**; emissions are no longer directly proportional to soil carbon content. Developed and tested at 6 boreal and 1 temperate sites

JULES-microbe

Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions

Sarah E. Chadburn¹ ©, Tuula Aalto², Mika Aurela², Dennis Baldocchi¹ ⑩, Christina Biasi⁴ ⑩, Julia Boike⁵ ⑪, Eleanor J. Burke² ⑪, Edward Comyn-Platf³, A. Johannes Dolman⁰ ⑫, Carolina Duran-Rojas¹, Yuncahoa Fana¹¹i¹, Thomas Friborg¹², Yao Gao² ⑪, Nicola Gedney¹³, Mathias Göckede¹⁴, Garry D. Hayman¹s ⑫, David Holl¹⁰ ⑥, Gustaf Hugelius¹¹ ⑫, Lars Kutzbach¹¹ ⑪, Hanna Lee¹¹ ⑫, Annalea Lohila²¹¹ ℚ, Frans-Jan W. Parmentier¹¹9-20 ℚ, Torsten Sachs² ⑪, Narasinha J. Shurpail² ఔ ₀, and Sebastian Westermann¹⁰     ⑤.

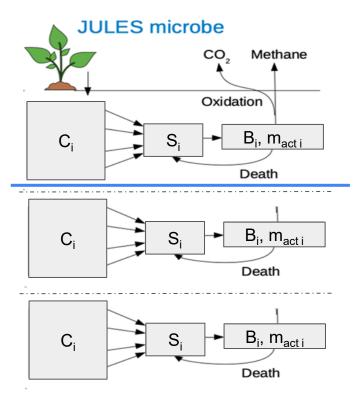
Received 22 MAY 2020 Accepted 19 OCT 2020 Accepted article online 31 OCT 2020

C : soil Carbon measured (site) or JULES

S: soil substrate

B : methanogenic biomass m_{act} : methanogenic activity

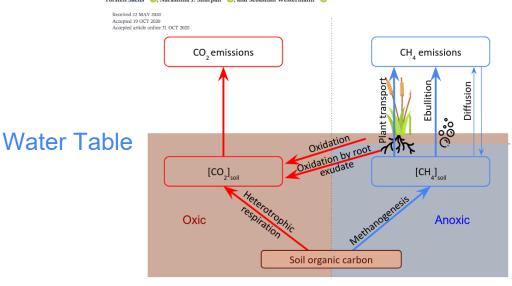
in each soil layer i:


$$\begin{split} \frac{dS}{\mathrm{d}t} &= C \; dissolution \; - \; methanogenesis \; - \; hetertrophic \; resp \\ &= k_1 Q_1^{0.1} \frac{T}{1-T/T_0} C_3^{\frac{2}{3}} - k_2 Q_2^{0.1} \frac{T}{1-T/T_0} \phi B m_{act} - \xi \; S \\ \frac{dB}{\mathrm{d}t} &= \; growth \; \; - \; \; death \; \; - \; maintenance \; resp \\ &= (fk_2 \phi B m_{act} \; - \; k_d B m_{act} \; - \; \alpha k_2 B) Q_2^{0.1T/(1-T/T_0)} \\ \frac{d_{mact}}{\mathrm{d}t} &= \; \pm \; f \; k_2 \; A_2 \; m_{act} \; \; \stackrel{+}{\text{if growth}} \triangleright \mu \\ &- \; \quad \text{if not} \end{split}$$

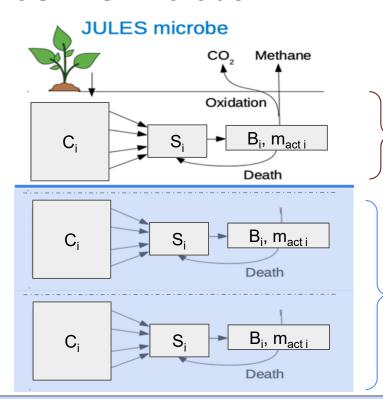
$$F_{CH4} = \underbrace{f_w} \sum_{i} F_{CH4, i} e^{-\tau z_i} dz_i = f_w \sum_{i} \frac{1}{2} k_2 Q_2^{0.1 \frac{T}{1 - T/T_0}} \phi B m_{act} e^{-\tau z_i} dz_i$$

→ goal : to represent the **microbial community**; emissions are no longer directly proportional to soil carbon content.

Developed and tested at 6 boreal and 1 temperate sites


JULES-microbeWT

Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland


Methane Emissions

Sarah E. Chadburn¹ ©, Tuula Aalto², Mika Aurela², Dennis Baldocchi² ©, Christina Biasi⁴ ©,
Julia Boike^{5,6} ©, Eleanor J. Burke⁷ ©, Edward Comyn-Plati², A Johannes Dolman² ©,
Carolina Duran-Rojas¹, Yuanchao Fan⁸⁰¹, Thomas Friborg¹², Yao Gao⁷ ©, Nicola Gedneyi³,
Mathias Göckede¹⁴, Garry D. Hayman¹⁵ ©, David Holli¹⁶ ©, Gustaf Hugelius¹⁷ ©,
Lars Kutzbachi¹⁶ ©, Hanna Lee¹⁸ ©, Annalea Lohila^{2,18} ©, Frans-Jan W. Parmentier^{19,26} ©,
Torsten Sachs²¹ ©, Narasinha J. Shurpali²² ©, and Sebastian Westermann¹⁹ ©

→ but in reality, emissions can occur if WT is below the surface, e.g. -10cm

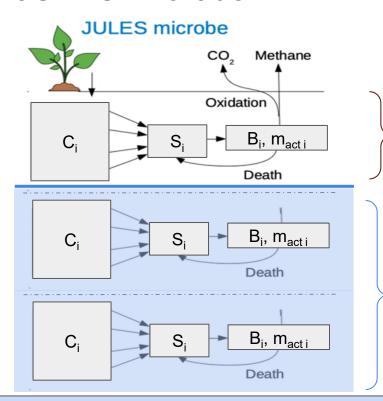
JULES-microbeWT

Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland

Methane Emissions

Sarah E. Chadburn 100. Tuula Aalto2. Mika Aurela2. Dennis Baldocchi3 00. Christina Biasi4 00. Julia Boike^{5,6} D, Eleanor J. Burke⁷ D, Edward Comyn-Platt⁸, A. Johannes Dolman⁹ D, Carolina Duran-Rojas¹, Yuanchao Fan^{10,11}, Thomas Friborg¹², Yao Gao², Nicola Gedney¹³, Mathias Göckede14, Garry D. Hayman15 0, David Holl16 0, Gustaf Hugelius17 0, Lars Kutzbach 16 D, Hanna Lee 10 D, Annalea Lohila 2,18 D, Frans-Jan W. Parmentier 19,20 D, Torsten Sachs²¹ D, Narasinha J. Shurpali²² D, and Sebastian Westermann¹⁹ D

Received 22 MAY 2020 Accepted 19 OCT 2020 Accepted article online 31 OCT 2020


dry layer → substrate, microbial biomass, microbial activity no methane emission

Water Table

wet layers \rightarrow substrate, microbial biomass, microbial activity methane emission

→ goal : to represent the influence of the water table (WT)

JULES-microbeWT

Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland

Methane Emissions

Sarah E. Chadburn 1 D. Tuula Aalto 2, Mika Aurela 2, Dennis Baldocchi 3 D. Christina Biasi 4 D. Julia Boike^{5,6} D, Eleanor J. Burke⁷ D, Edward Comyn-Platt⁸, A. Johannes Dolman⁹ D, Carolina Duran-Rojas¹, Yuanchao Fan^{10,11}, Thomas Friborg¹², Yao Gao², Nicola Gedney¹³, Mathias Göckede14, Garry D. Hayman15 10, David Holl16 10, Gustaf Hugelius17 10, Lars Kutzbach 16 D, Hanna Lee 10 D, Annalea Lohila 2,18 D, Frans-Jan W. Parmentier 19,20 D Torsten Sachs²¹ , Narasinha J. Shurpali²² , and Sebastian Westermann¹⁹

Received 22 MAY 2020 Accepted 19 OCT 2020 Accepted article online 31 OCT 2020

dry layer → substrate, microbial biomass, microbial activity no methane emissions

Water Table

wet layers → substrate, microbial biomass, microbial activity methane emissions

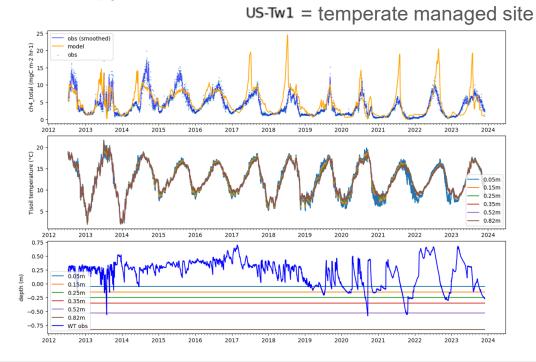
→ goal : to represent the influence of the water table (WT)

→ problem : only calibrated with **1 site**, which is a **temperate** and **managed** site (and probably degraded)

JULES-microbeWT developments

I. Local python version of JULES-microbeWT

I. Site data gathering and multisite calibration

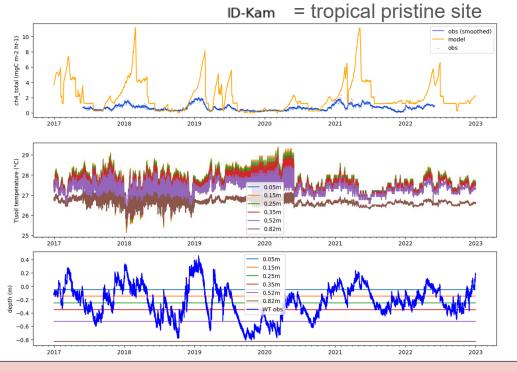

I. Global JULES runs

I. local python version of JULES-microbeWT

in collab. with Janice Liu (see her poster tomorrow)

→ draft of a bug-free* offline python version of the model

*hopefully


→ captures parts of the variability (complex model, lots of parameters), parameter tuning could be improved

I. local python version of JULES-microbeWT

in collab. with Janice Liu (see her poster tomorrow)

→ draft of a bug-free* offline python version of the model

*hopefully

→ needs parameter calibration at global scale

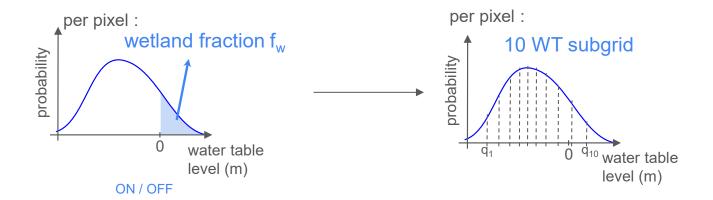
II. Site data gathering, especially in the tropics

→ There are lots of parameters to calibrate => more sites are needed.

II. Site data gathering, especially in the tropics

→ There are lots of parameters to calibrate => more sites are needed.

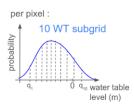
processed (4)


- → Data gathering of tropical sites began by J. Ramirez.
- → Since the development of the model in 2020, new data a few new sites in the tropics (including TroPeaCC sites!).
- → Work in progress: listing and gathering data, plus gap filling using machine learning (ML) and meteorological reanalysis (ERA5).

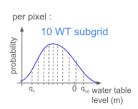
variables needed: FCH4 (½ hourly) Water Table (½ hourly) Temperature (½ hourly) soil carbon profile degraded or managed (71) pristine, not collected or data are missing (74) collected - gap filling in progress (23)

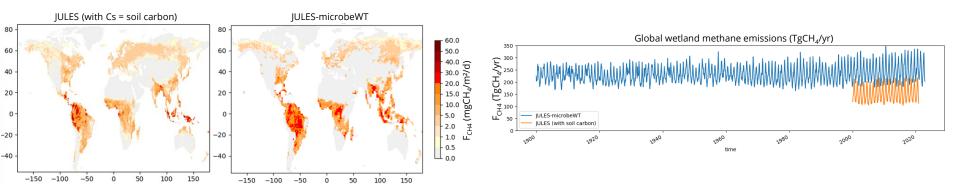
Eddy Covariance towers with methane measurements in wetland sites

III. Implementation in FORTRAN JULES


→ Part of this has already been implemented in the global FORTRAN JULES by S. Chadburn in 2020.

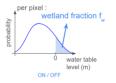
→ run the model on the 10 subgrid


III. Implementation in FORTRAN JULES


- → part is already implemented in global FORTRAN JULES by S. Chadburn in 2020
- → merge with trunk vn7.8

III. Implementation in FORTRAN JULES

- → part is already implemented in global FORTRAN JULES by S. Chadburn in 2020
- → merge with trunk vn7.8



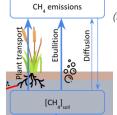
- → still some inconsistency
 - too much inundation
 - → tries to use more realistic soil properties ancillaries, led to bug with negative nitrogen in soils
 - bug with water table management? seems to be defined twice at different location in the code?
- → limitation : this approach doesn't account for river flooding, one important way of wetland formation

IV. perspectives

→ global runs to compare WT consideration effect vs wetland fraction consideration

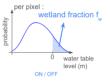
IV. perspectives

→ global runs to compare WT consideration effect vs wetland fraction consideration

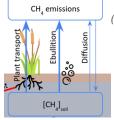


- \rightarrow adding processes :
 - refine rewetting (now, on/off)
 - transport through plants

if water table above root depth, then bypass oxidation

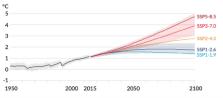

(following same logical as Gedney et al. 2019 developments for wetland fraction)

VS


IV. perspectives

→ global runs to compare WT consideration effect vs wetland fraction consideration

- \rightarrow adding processes :
 - refine rewetting (now, on/off)
 - transport through plants



if water table above root depth, then bypass oxidation

(following same logical as Gedney et al. 2019 developments for wetland fraction)

VS

- → global runs
 - analyse past emissions estimates
 - projections : estimate future emissions under different scenarios

TroPeaCC project (ERC)

Modelling the effects of water table dynamics on microbial methane emissions: focus on the tropics

Many thanks for your attention

j.bernard@exeter.ac.uk

Juliette Bernard, Eleanor Burke, Sarah Chadburn, Angela Gallego-Sala, Nicola Gedney, Jorge Ramirez, Janice Liu.

Site collaborators: Paola Alarcon, Juan C. Benavides, Rodney A. Chimner, I. Chesney, Alejandro Delgado, Chandra S. Deshmukh, Jenny Farmer, Timothy J. Griffis, Takashi Hirano, Charles Jjuuko, Carol Kagaba, Frank Kansiime, Joerg Kaduk, Erik Lilleskov, D. Tyler Roman, Daniel M. Ricciuto Caroline Signori-Muller et FengHui Yuan.