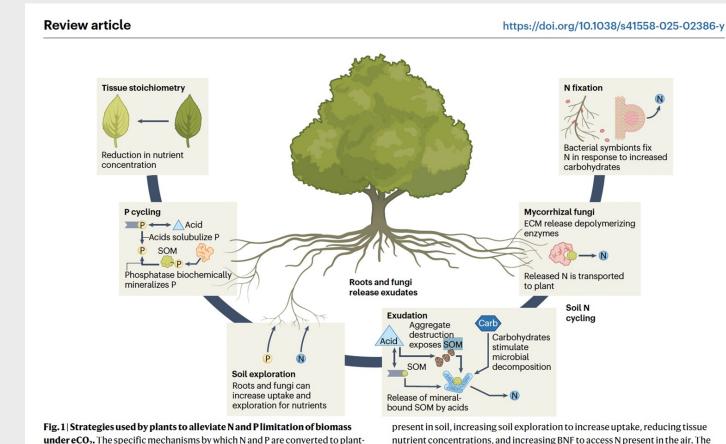

JULES-CNP: Towards Improved Nutrient Limitation Representation for Mature Temperate Deciduous Forests

Alexander Kurganskiy, Douglas Clark, Lina Mercado, Andre Nakhavali, Rebecca Oliver, Stephen Sitch


JULES annual meeting, Leicester 15.09.25

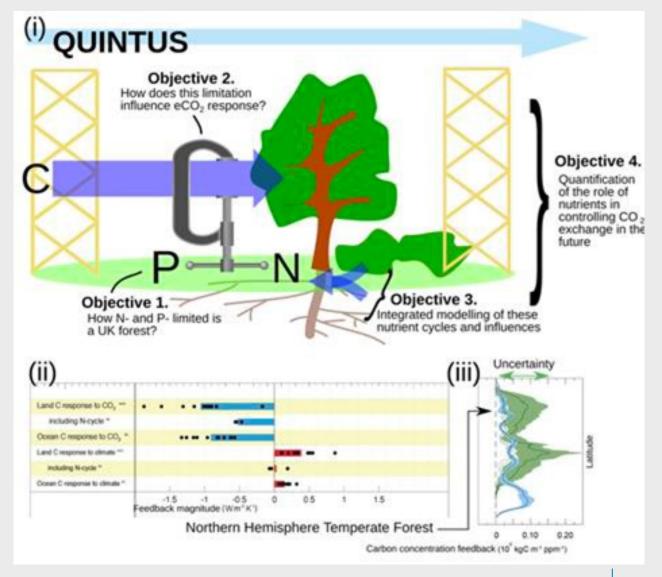
Motivation: Why nutrients matter

- Mature temperate forests = critical carbon sinks
- Nutrient availability (N & P) regulates carbon uptake
- Uncertainty in nutrient limitation
 → uncertainty in climate
 projections & policy decisions

Source: Cambron et al., 2025, Nature Climate Change

available forms vary due to differences in their biogeochemical cycles and the

types of bond involved. Strategies include increasing the cycling of N and P


ability of a plant to employ each strategy depends on species, and the use of each

strategy is dependent on conditions.

QUINTUS* Project

*Quinquennial Carbon and Nutrient Dynamics in Temperate Forests

- Aim: reduce uncertainty in carbon–climate feedbacks
- Approach: combine Free-Air CO₂
 Enrichment (FACE) experiment at
 BIFoR (Birmingham Institute of
 Forest Research, UK) with model
 development
- JULES as the central modelling tool

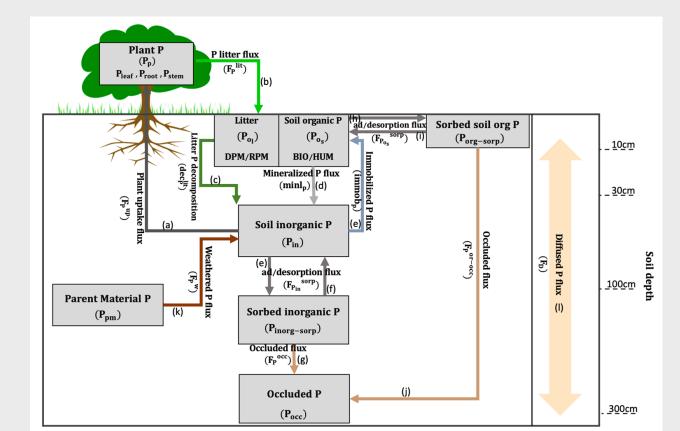
JULES and nutrient limitation

Geosci. Model Dev., 15, 5241–5269, 2022 https://doi.org/10.5194/gmd-15-5241-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Model description paper

- JULES: UK land surface model (Clark et al., 2011)
- Previous developments:
 - CN scheme (Wiltshire et al., 2021)
 - **CNP** scheme (Nakhavali et al., 2022)
- Our work: porting CNP to JULES
 v7.8 → aligned with current developments

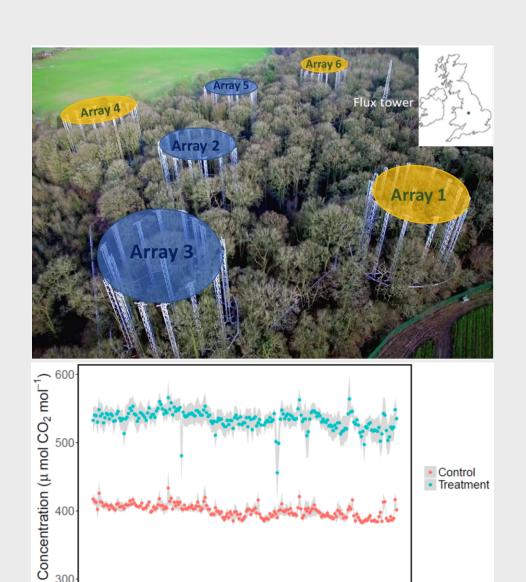
Geosci. Model Dev., 14, 2161–2186, 2021 https://doi.org/10.5194/gmd-14-2161-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.



JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1)

Andrew J. Wiltshire^{1,2}, Eleanor J. Burke¹, Sarah E. Chadburn³, Chris D. Jones¹, Peter M. Cox³, Taraka Davies-Barnard³, Pierre Friedlingstein³, Anna B. Harper³, Spencer Liddicoat¹, Stephen Sitch², and Sönke Zaehle⁴

Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5 JULES-CNP)


Mahdi André Nakhavali¹, Lina M. Mercado^{1,2}, Iain P. Hartley¹, Stephen Sitch¹, Fernanda V. Cunha³, Raffaello di Ponzio³, Laynara F. Lugli³, Carlos A. Quesada³, Kelly M. Andersen^{1,4,5}, Sarah E. Chadburn⁶, Andy J. Wiltshire^{1,7}, Douglas B. Clark², Gyovanni Ribeiro³, Lara Siebert³, Anna C. M. Moraes³, Jéssica Schmeisk Rosa³, Rafael Assis³, and José L. Camargo³

Study site: BIFoR FACE (Mill Haft, Staffordshire, UK)

- First whole-ecosystem FACE experiment in a mature temperate forest (since 2017).
- 20 ha deciduous woodland, dominated by 160year-old oak with mixed understory.
- Six experimental arrays: three ambient (aCO₂, Array 2, 3, 5) and three fumigated with +150 ppm CO₂ (eCO₂, Array 1, 4, 6).
- eCO₂ delivered continuously into 25 m diameter plots; monitored with dense sensor network.
- Unique long-term experiment (planned 2017– 2026) testing CO₂ impacts on an unmanaged, mature forest.
- Provides both ambient and elevated CO₂ time series and ecosystem response data to benchmark JULES.

Figures: Rumeau et al., 2024 & QUINTUS project proposal

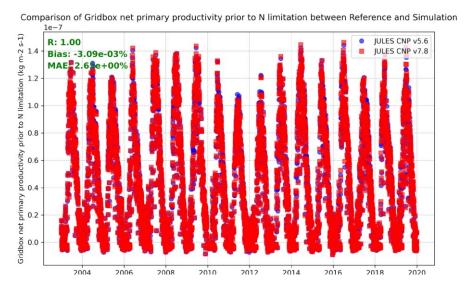
Jul

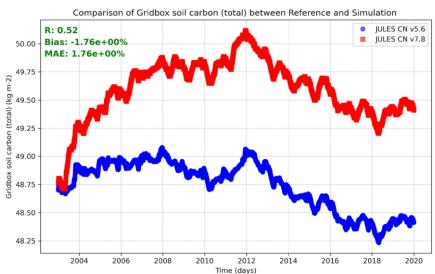
2017

Sep

May

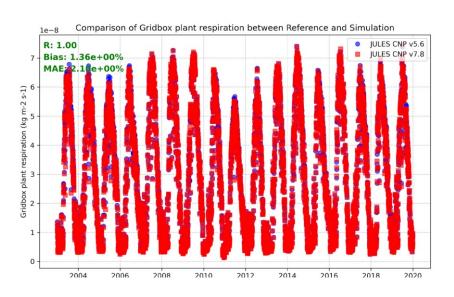
Nov

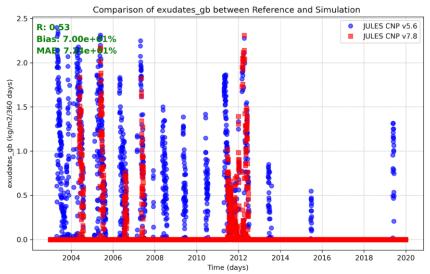

JULES: Model setup & experiments



- Single-point JULES runs for the BIFoR FACE site
- Period: 2002–2019
- Forcing: Hourly meteo obs Shawbury, Shropshire (~6 km from BIFoR)
- CO₂ treatments:
 - Fixed ambient: ~403 ppm
 - **Fixed elevated:** 553 ppm (+150 ppm above ambient)
 - Time-dependent CO₂: CAMS-EGG4 3-hourly series, with +150 ppm for eCO₂
- Experiments:
 - Ported JULES-CNP scheme to v7.8 and compared with v5.5(6)
 - CN, and CNP configurations to quantify nutrient limitations
 - Assessed model response to ambient vs elevated CO₂ (fixed and CAMS-EGG4 time-dependent)

Results: JULES version sensitivity vn5.5(6) vs. vn7.8




<- NPP

Plant respiration ->

<- Soil Carbon

Exudates ->

Understanding version differences

CN update v6.3 - possible cause of higher N

#1213 closed enhancement (fixed)

Opened 4 years ago Closed 3 years ago Last modified 3 years ago

update layered CN model

Priority: normal Milestone: JULES v6.3 (Feb-22) Keywords: kgo CR:roddysharp Cc:	Reported by:	eleanorburke	Owned by:	eleanorburke
Keywords: kgo CR:roddysharp Cc:	Priority:	normal	Milestone:	JULES v6.3 (Feb-22)
	Keywords:	kgo CR:roddysharp	Cc:	

Description (last modified by eleanorburke) A

This is ONLY for I layeredc=TRUE

→ Reply

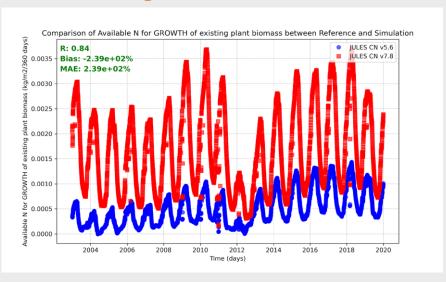
fn_gb is now applied so that the carbon going into the bio/hum pools is still multiplied by fn_gb (as before), but the amount of carbon going out of the dpm/rpm isn't limited and goes to the atmosphere. fn_gb is modified to reflect this change. This means the fraction of RESP_S (soil respiration) the fraction that is NOT released to the atmosphere now depends on the soil carbon pool (resp frac cspool(land pts,dim cslayer,dim cs1))

Info on the rationale behind the fn_gb change can be found in Section 2.2 of this preprint --> https://doi.org/10.5194/gmd-2021-263

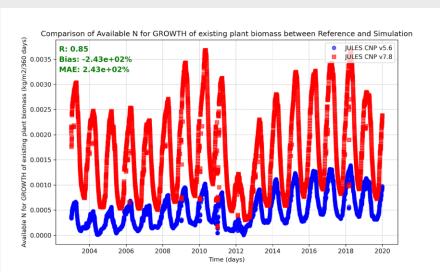
The burnt litter needs to be removed before decay is called in soilcarb layers for when the peat model is added. Note this only changes the order of calculations, not the results.

An extra turnover term is added to the inorganic nitrogen pool - this stops a huge ongoing build up in this pool in frozen soils. The additional turnover of inorganic nitrogen in frozen soils was used for the IMOGEN simulations carried out for this paper:

Thawing permafrost as a nitrogen fertiliser: implications for climate feedbacks (in preparation). The model produces realistic values of nitrogen stocks and fluxes.

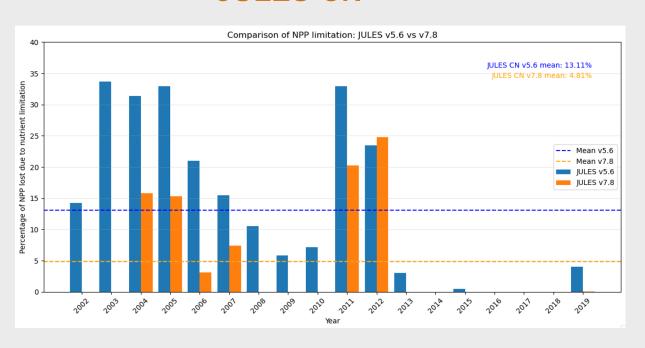

The figures for Samoylov show one year of simulation with and without these changes. The impacts are small except for nloss which, as expected increases because the inorganic nitrogen in frozen soils is allowed to turnover to stop it building up too much.

TicketSummary SciTechReview CodeSystemReview

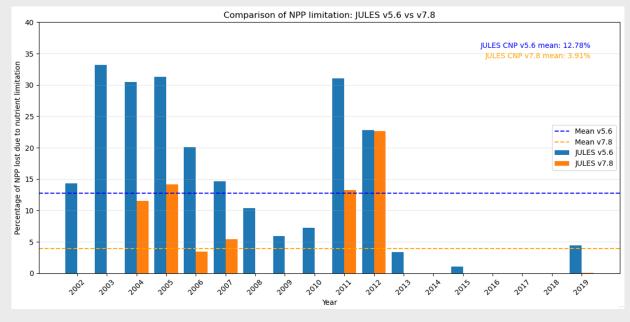

vn6.2_cnlayered_update Update to how soil carbon turnover and nitrogen availability are represented.

Less immobilisation → **more N available for growth?**

N growth, JULES-CN

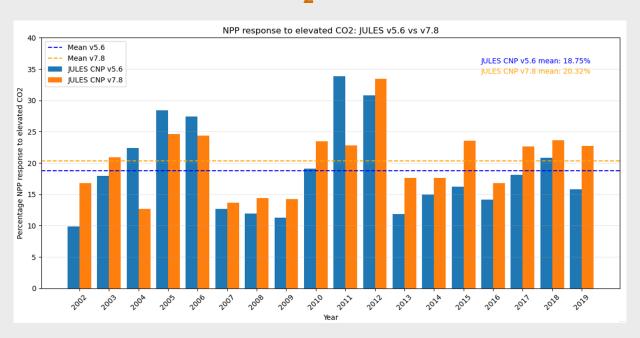


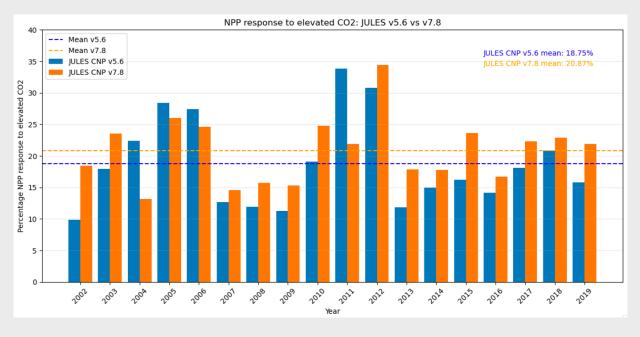
N growth, JULES-CNP



Nutrient limitation in JULES: v5.5(6) vs 7.8

JULES-CN


JULES-CNP



JULES model response to elevated CO₂

Fixed CO₂ levels

CAMS-EGG4 CO₂

Observed NPP response at BIFoR:

10% for 31% enrichment (21.8% for 41% enrichment at all FACE sites)

UK Centre for Norby 2025.

Ecology & Hydrology ceh.ac.uk

Summary & next steps

- JULES-CNP successfully ported to v7.8 and compared with v5.5(6)
- N and P limitation:
 - ~10% lower in v7.8; adding P decreases limitation by ~1% in both versions
- Model response to elevated CO₂:
 - $v5.5(6) \rightarrow 18.8\%, v7.8 \rightarrow 20.3\%$
 - using CAMS-EGG4 time series instead of fixed CO₂ increases response by ~0.5%

Next Steps:

- Code revision/improvements: (p_switch, co-limitation, exudates interactions)
- Use more BIFoR observations to quantify stocks and fluxes, and assess whether CNP processes reproduce the right responses for the right reasons
- Apply model at biome scale beyond single-point BIFoR run

Thank you!

For more information please contact:
Alexander Kurganskiy
Email: AleKur@ceh.ac.uk

