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3. Results1. Background 

❖Land surface models (LSMs) simulate energy, water, and carbon exchange.

❖These simulations underpin climate predictions, ecosystem assessments, and 

sustainable land management policies.

❖African ecosystems are underrepresented in LSM development and evaluation.

❖This limits the accuracy of predictions for climate adaptation and land management.

Our Study

❖We evaluated the Joint UK Land Environment Simulator (JULES) using observations 

from 16 African eddy covariance flux tower sites.

❖Sites span savannas, croplands, wetlands, & forests, covering diverse climatic zones.

❖Fluxes assessed: GPP, RECO, ET, LE, H.

❖Focus: How model performance varies across ecosystem types and climatic gradients 

(MAT, Aridity index and precipitation anomaly).

Figure 1. Flux tower sites across Africa spanning major climatic and 

ecosystem gradients (16 sites, 5 ecosystem types).
Improving African ecosystem representation 

in LSMs strengthens model predictions for 

climate and land management.

Research Aim

❖Evaluate JULES across African ecosystems

❖Assess influence of MAT, AI, and precipitation anomaly with LMMs
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2. Methods

Figure 2. Number of site-years of flux observations across 

temperature and aridity gradients

Bias ~ MAT + AI + PrecipAnomly + (1 | SiteID)

Rmse ~ MAT + AI + PrecipAnomly + (1 | SiteID)

Corr ~ MAT + AI + PrecipAnomly + (1 | SiteID)

Statistical models (GLMMs) (per-flux)

Figure 3. Trajectories of total soil carbon (kgC m⁻²) over a 

1000-year spin-up for 16 African flux sites

Model performance was evaluated with 

daily to annual metrics

 Bias (systematic error)

 RMSE (magnitude of error)

 Correlation(r) (temporal correspondence)

JULES configuration and evaluation:

Model: JULES v7.1 (Met Office Rose suite 

baseline u-al752 baseline

Setup: Site-level, single-point runs at 30-min 

time steps.

Inputs: Site-specific PFT fractions, soil 

properties, and meteorological drivers.

Spin-up: 1000-year spin-up to equilibrate soil 

C pools before simulations.

Simulation period: Multi-year runs aligned 

with available flux tower records; outputs 

aggregated to daily resolution.

C. Evapotranspiration EC observed vs JULES simulated 

B. Reco EC observed vs JULES simulated 

D. Sensible heat  EC observed vs JULES simulated 

A. GPP EC observed vs JULES simulated 

Figure 4. JULES simulated vs observed fluxes from EC flux towers across 16 sites in Africa

JULES performance varied systematically across ecosystems. Croplands were consistently well simulated, 

forests and grasslands showed mixed outcomes, savannas captured water and energy fluxes but struggled 

with carbon, and wetlands were consistently the weakest across all fluxes.

Figure 5. GPP predicted performance from linear mixed effects model 

GPP bias decreased with warmer MAT but increased in drier sites and wetter-than-average years. RMSE 

showed similar climate dependencies, with errors lowest at warm sites but highest in dry and anomalously 

wet conditions. Correlation improved only during wetter-than-average periods, while MAT and AI effects 

were weak.

Figure 6. Reco predicted performance from linear mixed effects model 

Reco bias declined with warmer MAT but increased during wetter-than-average years, while aridity showed 

only a weak effect. Errors (RMSE) were lowest at warm sites but rose under rainfall surpluses, consistent 

with the strongest anomaly signal. Correlation declined during wetter periods, while MAT and AI effects 

were weak

Figure 7. ET predicted performance from linear mixed effects model 

ET bias increased under wetter conditions and more humid climates, while temperature had little effect. 

Errors (RMSE) rose with higher MAT and AI, though wetter years slightly reduced errors. Correlation 

showed only weak and uncertain responses to climate gradients.

4. conclusion

➢ RECO is the weakest flux overall, with poor model–data agreement across most sites.

➢ Wetlands are the poorest-performing ecosystems, with large errors across all fluxes.

➢ Water-related gradients dominate model performance: precipitation anomalies and 

aridity consistently increase bias and error across fluxes.

➢ GPP emerges as the most climate-sensitive flux, shifting with MAT, AI, and 

precipitation anomalies.

➢ RECO carries a clear MAT signal, and ET shows mixed responses under wetter and 

more humid conditions.

5. Next steps

•Assess inter-annual variability of GPP using hydrological years at sites with ≥4 years of data.

•Analyse intra-annual (seasonal) variability in 3-month windows to test JULES’ seasonal timing.

•Identify how well JULES captures year-to-year anomalies and seasonal dynamics of GPP.
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