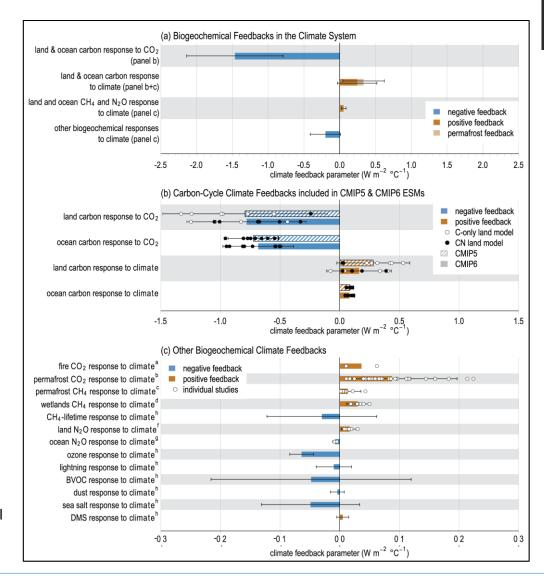
JULES and the Warming Induced Emissions Model Intercomparison Project (WIE-MIP)

G Hayman, C Jones, D Hooke, C Mathison and E Burke

September 2025

NATIONAL CAPABILITY
FOR GLOBAL CHALLENGES
International science for net zero plus

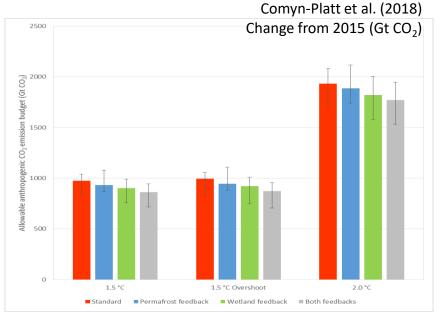


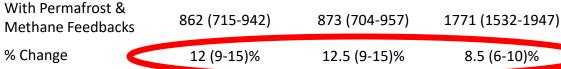
WIE-MIP: Motivation

Met Office

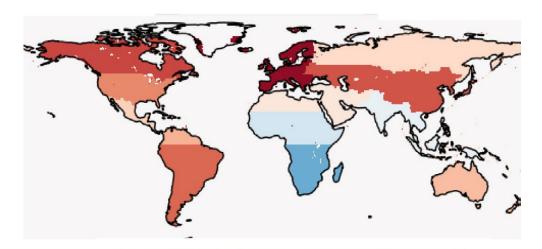
- Positive or negative climate feedbacks linked to greenhouse gas emissions from natural sources (esp. land)
- Affects the remaining anthropogenic carbon budget to limit global warming to 1.5 or 2 °C above pre-industrial temperatures (Paris Agreement)
- In consequence, increased mitigation of anthropogenic GHG emissions and/or more Carbon Dioxide removal required

IPCC AR6, carbon cycle and biogeochemical feedbacks *Canadell et al, 2021*, figure 5.29



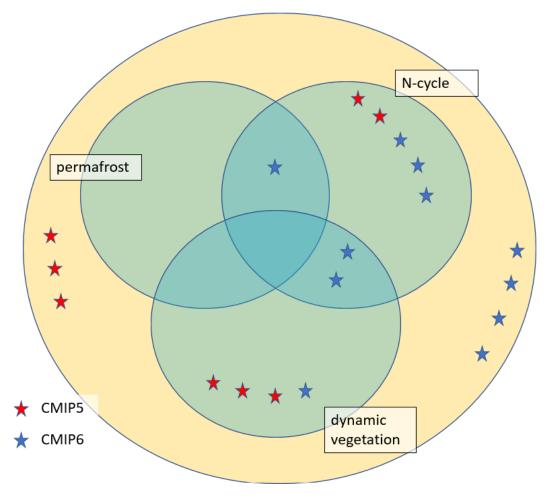


Process studies with JULES



 Using IMOGEN-JULES, Comyn-Platt et al. showed ~8-12% reduction in the remaining C budget from permafrost thaw & wetland methane

 Using JULES with different climate model inputs, Burton et al. showed ~5% reduction in the remaining C budget from fire



WIE-MIP: Motivation

- CMIP ESMs include a range of different processes
- No 2 models have the same combination of nitrogen cycle, permafrost, fire, vegetation dynamics, etc ...
- Impossible to make clear statements of the importance of each process
- WIE-MIP proposes a systematic, multi-landmodel intercomparison to quantify the importance of each process

WIE-MIP: Processes of interest

WIE Focal Area		2025	2030	2050	2075	2100
*	Permafrost	•	TBD	TBD	TBD	TBD
	Wetland CH ₄					
<u> </u>	Soil carbon					
	Forest dieback		TBD	TBD	TBD	TBD
***	Agriculture N ₂ O		TBD	TBD	TBD	TBD
1	Wildfire			•	•	•
, of	Indirect atm. chemistry	•	TBD	TBD	TBD	TBD
****	Marine systems (incl. hydrates)		TBD	TBD	TBD	TBD
•	1 to 5 Gt CO ₂ e yr ⁻¹ 5 to 50 Gt CO ₂ e yr	-1	High confidence			

- Magnitude of warming-induced emissions
- Large uncertainties or not yet evaluated

50 to 100 Gt CO₂e yr⁻¹

Low confidence

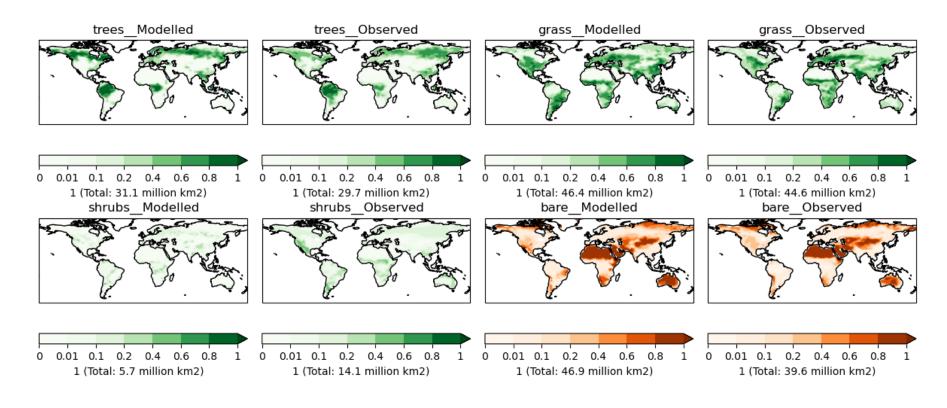
WIE-MIP: Scope & Protocol

- Scope discussed at workshop held in July
- Protocol
 - 5 scenarios:
 - idealized (1% per annum increase in atmospheric CO₂) to quantify climate-carbon cycle feedbacks
 - overshoot (3 scenarios, modifying peak, duration, and stabilization level) hopefully drawing on latest ScenarioMIP CMIP7 scenarios
 - unmitigated
 - Land surface modelling with PRIME
 - Factorial: permafrost, wildfire, wetland methane, soil biogeochemistry, forest dieback, BVOC
 - For CO₂/CH₄/N₂O, other processes also welcome (i.e., disease/insects)
 - Aim to submit Protocol paper to Geosci. Mod. Devel. by November 2025
- Outputs to inform WCRP TCRE report, remaining carbon budget and Zero Emission Commitment

PRIME (see poster)

Mathison et al., 2025 https://doi.org/10.5194/gmd-18-1785-2025

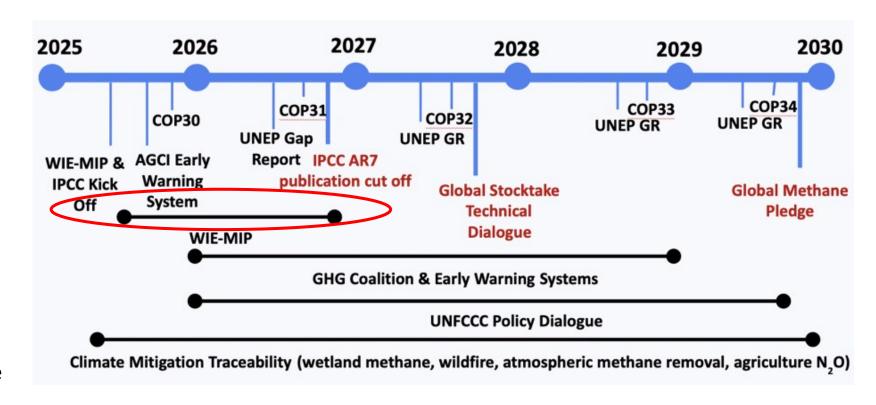
- Combines global climate emulation, pattern scaling and land modelling
- A flexible probabilistic framework able to efficiently run new scenarios without the overheads of larger more complex Earth system models (ESMs)
- Developed to run with JULES, providing the capability to sample:
 - different emissions/conc pathways
 - different global climate feedbacks
 - different climate patterns
- Provide driving data for other land surface models



Planned JULES configuration based on UKESM2+

JULES-ES + fire + permafrost + vegetation acclimation

Contributions to configuration development welcome (eleanor.burke@metoffice.gov.uk)



WIE-MIP: Timeline

- 2025 Nov: Protocol available
- 2026-01: Data distributed
- 2026 Spring: Model simulations
- 2026 Summer: Analysis including workshop
- 2026 Q4: Paper writing and submission
- 2027-03: Submission deadline for IPCC AR7 WG1

Opportunity to participate

- Contribute to the 'JULES ES' configuration to be used in WIE-MIP
- Funding secured for WiE-MIP to cover
 - Core activities (Data, PRIME, workshops)
 - To enable community participation: light-touch application planned
- Speak to Chris Jones (chris.d.jones@metoffice.gov.uk) or Garry Hayman (garr@ceh.ac.uk)

