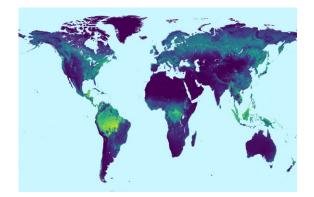


Developing a High-Resolution LAI Ancillary Using Modern Satellite Observations

Joshua Dale – 12-month Industrial Placement Jennifer Brooke, Martin Best

16/09/2025 – JULES Annual Meeting


What is an ancillary?

- Files that provide our models with external datasets
- Can be global or regional
- Land surface representation essential for high resolution NWP

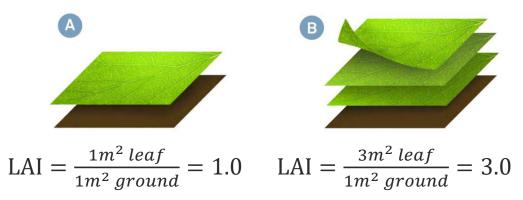
e.g.

Land cover

LAI

Why do we need ancillaries?

- Provide forecasting models with up-to-date, realistic land surface information
- Without them, models cannot deliver accurate forecasts


Static ancillary issues

- Permanent land surface changes can propagate errors through to forecasts
- Affects regional and global forecasts

What is Leaf Area Index – LAI?

- · Quantifies the amount of leaf material in a canopy
- The fraction of photosynthetically active radiation (400-700 nm) absorbed by green vegetation
- Measured on a scale of 0 to 7
- Dimensionless

4km MODIS LAI Ancillary – What we're using now

- Based on MODIS—Terra raw data (prepared by Boston University)
- 2005 to 2009 temporal span
- Spatial resolution 4km / 0.04167°

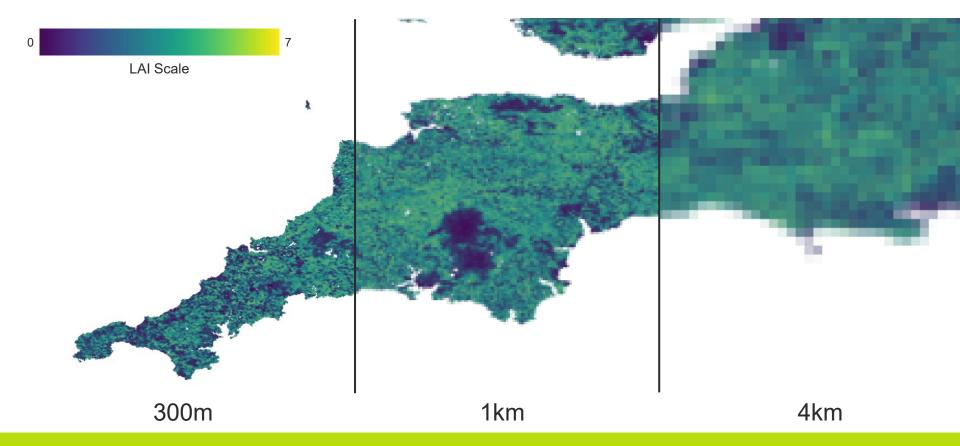
Methodology

- Fill missing values using nearest-neighbour
- Compute monthly means
- Revise extreme values

© Crown Copyright 2025, Met Office

Resolving extreme LAI values

- Current ANTS code can produce extreme LAI values,
 - e.g. a max of 47 for broadleaf trees
- Problem occurs when the land cover ancillary says there is a very small vegetated fraction, but the LAI ancillary says that the LAI for the region is high.
- Worse at higher resolutions.



4km MODIS LAI – Why we're planning to replace it

- Short climatology (5 years) greatly affected by extremes in weather
 e.g. can be biased due to a long period of drought
- No urban coverage Large urban areas (e.g., London) poorly represented
- Coarse resolution (4 km)
 - A higher resolution LAI ancillary may reduce the extreme LAI value spikes

Resolution Comparison

New LAI Data Products

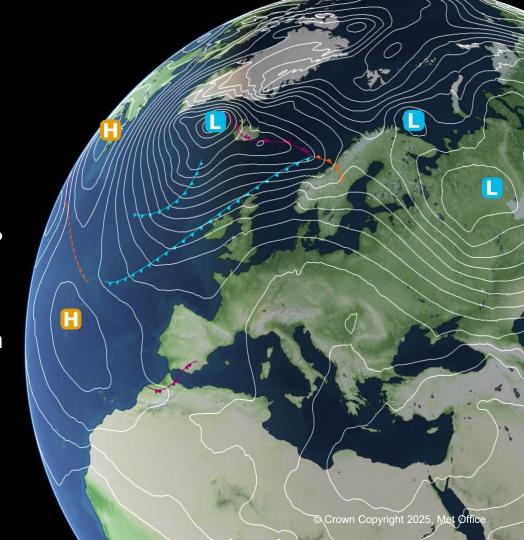
- New high-resolution options
- New LAI derivation algorithms

Organisation	Platforms	Resolution ↓	Temporal Resolution	Longitude Coverage	Latitude Coverage
Copernicus	SPOT, PROBA-V	1000m	10 days	Global	80° N to 60° S
NASA MODIS	Aqua, Terra	500m	8 days	Global	Global
Copernicus	PROBA-V, Sentinel-3	300m	10 days	Global	80° N to 60° S

Selected Copernicus 1 km 10-day LAI

Preprocessing Methodology — Raw data product → Pre-processed master file

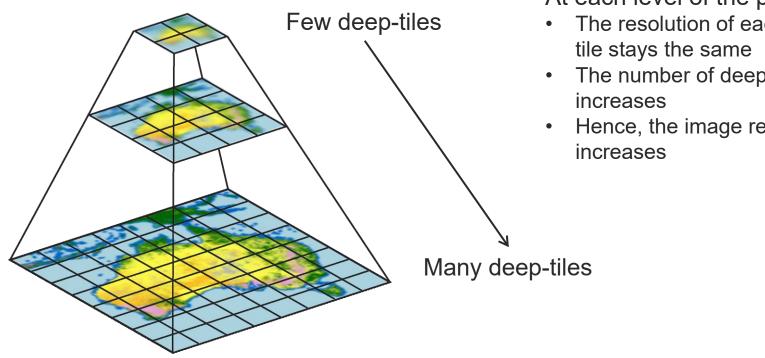
Use latest revision of each 10-day product


For each month:

- Include all data from last 5 years for testing methodology
 - extend temporal span after initial testing
- Mask values using status flags
- Compute monthly mean using all valid observations
- Pad data latitudinally to achieve circular coverage

Aside: Deep Zoom Images

- What is a deep doom image (DZI)?
- How can they be leveraged to explore earth observation data?
- DZI usage in LAI ancillary research


What is a Deep Zoom Image?

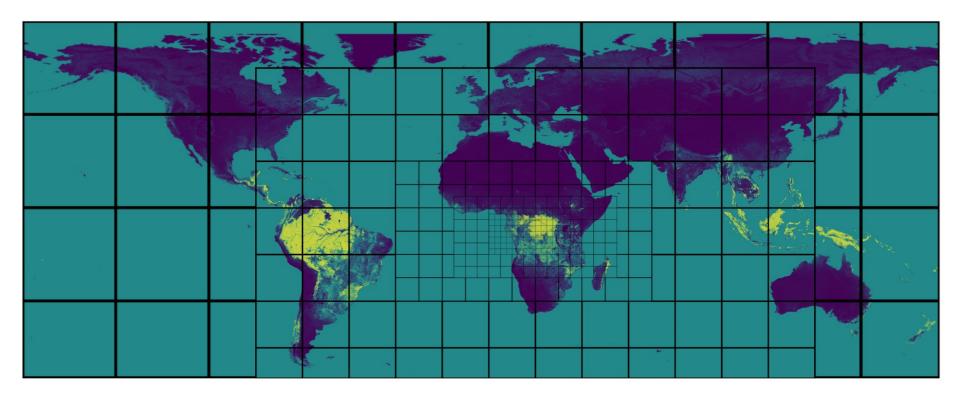
A deep zoom image is an efficient way to view very high-resolution images

- Image is split into deep-tiles
- Deep-tiles arranged in a pyramid of resolutions
- Can be created from earth observation data for instant viewing of high-resolution datasets

How does DZI work?

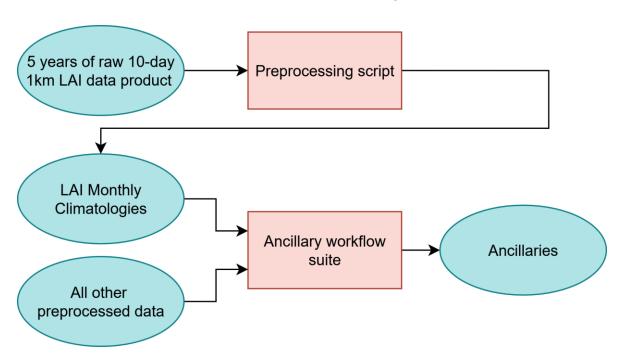
At each level of the pyramid:

- The resolution of each deep-
- The number of deep-tiles
- Hence, the image resolution



Deep Zoom Images

Deep Zoom Images



Role of DZI in creating the new LAI Ancillary

- Viewing datasets while scoping
- Sight check new climatologies
- Spot artefacts or missing regions in data
- Can be used to produce local difference plots on-the-fly, without having to load an entire dataset.

The Land Ancillary Suite

- Processes master files
- Performs re-gridding
- Saves ancillaries to disk

www.metoffice.gov.uk © Crown Copyright 2025, Met Office

Land Cover and LAI

	Current	Α	В
LAI	MODIS 4km LAI	ESA-based LAI	MODIS 500m LAI
Land Cover	ESA CCI Land Cover	ESA CCI Land Cover	IGBP Land Cover

www.metoffice.gov.uk © Crown Copyright 2025, Met Office

Conclusions & next steps

- Some current ancillaries are at coarse resolutions
- New, high resolution satellite observations available
- Leverage Deep Zoom
- Testing and evaluation of new 1km Copernicus-based ancillary
- With a focus on regions with known issues