JULES and the northern high latitudes

Eleanor Burke and Sarah Chadburn
Developing an optimal JULES configuration for the northern high latitudes

- Model development and configuration
- Model evaluation
- Leading to a GMD documentation paper and a recommended configuration for the community and UKESM
Available model developments in vn5.5

• Soil thermal conductivity of organic soils
• Ability of permafrost to hold water
• Vertical profile of soil properties (*improved but still buggy*)
• Vertically resolved soil carbon (*and nitrogen – buggy ask me, will sort asap!.....*)
• Wetland methane emissions as a function of depth
• Bedrock

ANYTHING FROM THE COMMUNITY?
Relevant model developments not yet in the trunk

• Fix vertically resolved soil carbon and nitrogen model
• Fix vertical soil properties
• Microbial methane model (see Sarah’s talk)
• Moss PFT
• ECOSSE soil carbon and nitrogen
• DOC

ANYTHING FROM THE COMMUNITY?
New configuration components and ancillaries

Preliminary Arctic grasses pft
Organic soils
More and deeper soil layers

ANYTHING FROM THE COMMUNITY?
Site simulations - driving data

- Code developed to bias correct WATCH/WFDEI based on available site data.
- Snowfall is back-calculated from the observed snow depth.
- Happy to help with driving data for additional sites of interest.
Site simulations - evaluation

Black is observations and blue is JULES

5 tundra sites represented here – more available.

Chadburn et al. (2017)
Pan-arctic simulations

Permafrost area = 20.3 million km2

Burke et al. (2017)
Examples of process evaluation

GPP per square meter of leaf

GPP / LAI (μmol/m²/s)

Mean annual air temp (°C)

Observations

JULES

Chadburn et al. (2017)
Examples of process evaluation

Probability of presence of permafrost as a function of mean annual air temperature

Colours are JULES, black are observations

Chadburn et al. (2017)
Warming experiments for process evaluation

Global Change Biology

Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw

VERITY G. SALMON1, PATRICK SOUCY1, MARGUERITE MAURITZ2, GERARDO CE LIS2, SUSAN M. NAT ALI1, MICHELLE C. MACK1,2, and EDWARD A. G. SCHUUR1,2

1Biology Department, University of Florida, Gainesville, FL 32611, USA; 2Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA; 3Woods Hole Research Center, Falmouth, MA 02540, USA

Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems

CAITLIN E. HICKS PRIES1,2, RICHARD S. P. VAN LOG CST Eijn3, EDWARD A. G. SCHUUR2,4, SUSAN M. NATALI2,4, JOHANNES H. C. CORNELISSEN5, RIEN AERTS5, and ELLEN DORREPAAL1

1Earth Sciences Division, Lawrence Berkeley National Laboratory, J. Cytelton Road, Berkeley, CA 94720, USA; 2Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA; 3Department of System Ecology, Utrecht University, 1006 NL Amsterdam, the Netherlands; 4Climate Impact Research Center, Department of Ecology and Environmental Sciences, Umea University, S-901 87 Umea, Sweden

Ecology, 95(3), 2014, pp. 602–618 © 2014 by the Ecological Society of America

Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem

Philipp R. Semanchuk1,2,4,5, Casper T. Christiansen2,4,5, Paul Grogas3,4,5, and Elisabeth J. Cooper1

1Institute of Arctic and Marine Biology, UIN The Arctic University of Norway, Tromsø, Norway; 2Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; 3University Center in Svalbard, Longyearbyen, Norway; 4Climate Impact Research Center, Department of Ecology and Environmental Sciences, Umea University, Umeå, Sweden; 5Department of Biology, Queen’s University, Kingston, Ontario, Canada; 6Arctic Station, Faculty of Science, University of Copenhagen, Qeqertasuaq, Greenland

Supporting Information:
Permafrost degradation stimulates carbon loss from experimentally warmed tundra

SUSAN M. NATALI1,2,4, EDWARD A. G. SCHUUR2, ELIZABETH E. WEEK2, CAITLIN E. HICKS PRIES2, and KATHRYN G. CREUMER2

1Woods Hole Research Center, 149 Woods Hole Road, Falmouth, Massachusetts 02540, USA; 2Department of Biology, 220 Bartram Hall, University of Florida, Gainesville, Florida 32611, USA
Nutrient fertilization with JULES

- No fertilization
- Shallow fertilization
- Deep fertilization
- Fertilization at both depths
- Sum of deep and shallow fertilization

Vitali et al. (2019)
• Gather list of people interested in the northern high latitudes from both JULES, EO and experimental community
• Improve and evaluate the current model and configuration and document it in a GMD paper
• Make configuration and evaluation more easily available to the community
• Use up-to-date configuration in upcoming versions of UKESM
• Maintain a network of interested people.