Progress on new soil C and N parameterisations for JULES (ECOSSE and FUN)

Douglas Clark
Centre for Ecology and Hydrology

Including work by J. Smith, K. Coleman, H. Wong, P. Smith, J. Fisher, Spencer Liddicoat and others.
A long time ago....

QUEST (QESM, QUERCC)
Aimed to couple JULES with (amongst others!):
- the ECOSSE model of soil C and N turnover
- the FUN model of plant N uptake

ECOSSE: Estimation of Carbon in organic Soils – Sequestration and Emissions
Smith, J. et al., 2010, Climate Research, 45: 179-192.
ECOSSE (and its predecessors, RothC and Sundial) have been widely used.

FUN: Fixation and Uptake of Nitrogen
A new model!
History of the JULES-ECOSSE-FUN code

• JULES1.0 + ECOSSE (to ~2007/8).

• JULES2.0-ECOSSE-FUN (~2008-10)
 Better integrated with JULES, FUN added.

• JULES3.1-ECOSSE-FUN (2012)
 The best so far!
 Revised coupling between components.
Schematic of the main connections between components of JULES-ECOSSE-FUN

- **Dynamic vegetation model (TRIFFID)**
- **JULES**
 - Surface energy balance, soil T and moisture, photosynthesis
- **Plant N uptake model (FUN)**
- **Soil C and N model (ECOSSE)**
 - NPP available for growth
 - NPP/ N demand soil T and moisture
 - N availability
 - N extraction
 - Organic content
 - Soil T and moisture
 - Litter inputs
 - Gas fluxes
 - Leaching

Vegetation amounts and properties (e.g. height, LAI)
Coupling frequencies between components of JULES-ECOSSE-FUN

- **JULES**
 - Surface energy balance, soil T and moisture, photosynthesis
 - Timestep (~30 mins)

- **Soil C and N model (ECOSSE)**
 - Daily

- **Plant N uptake model (FUN)**
 - ~10 days

- **Dynamic vegetation model (TRIFFID)**
JULES with and without ECOSSE and FUN

In JULES v3.2 (and before)

- **RothC**
 - 4 soil carbon pools
 - Decomposable plant material
 - Resistant plant material
 - Biomass
 - Humus
 - No structure with depth.

ECOSSE and FUN additions

ECOSSE

ECOSSE is (essentially) a layered combination of RothC and a soil N model. (RothC → SUNDIAL → ECOSSE)

- 4 soil carbon pools - layered
 - Decomposable plant material
 - Resistant plant material
 - Biomass
 - Humus

Plant N uptake

- **Plant N uptake**
 - Plant growth assumes no restriction by soil N.

Plant N uptake: FUN

- **Plants** acquire N via passive and active mechanisms. Active uptake reduces NPP => reduced plant growth.
Overview of ECOSSE (1)

1st order reactions
Rates modified by soil T and moisture, and pH.

Also anaerobic decomposition (CH\textsubscript{4}).
Decomposition of SOM results in mobilization or immobilization of inorganic N (NO_3^- and NH_4^+) to maintain C:N.

If insufficient N, decomposition is slowed and produces more CO_2.

Overview of ECOSSE (2) – soil and plant N processes
Inputs and outputs: JULES-ECOSSE

Inputs from JULES to ECOSSE:
• Litterfall C and N amounts
• Soil temperature and moisture
• Soil water flux (for leaching)
• Root distribution (for distribution of plant inputs)
• N deposition

Outputs from ECOSSE:
• soil C and N stores
• CO_2, CH_4, N_2O, NO, N$_2$, NH$_3$
• leaching DOC, NO$_3^-$, DON
Overview of FUN

FUN considers mechanisms through which plants can take up N:
- passive uptake (via water for transpiration)
- active uptake (extract N from soil)
- retranslocation (N removed from leaves before they are dropped)
- fixing by nodules

At each timestep the cheapest source is used (unrealistic?). If soil N is plentiful, C uptake can be matched by N with little or no cost. Otherwise NPP available for growth is reduced.
Inputs and outputs: JULES(-ECOSSE)-FUN

Inputs from JULES (-ECOSSE) to FUN:
• soil N stores (for costs)
• NPP
• transpiration rate (for passive uptake)
• root distribution
• leaf turnover (for amount of N in falling leaves; retranslocation)
• vegetation C and N amounts (for calculation of veg C:N)

Outputs from FUN:
• updated NPP (available for growth) and plant respiration – to JULES/TRIFFID
• N uptake amounts (to update soil N) – to ECOSSE
Configurations available (JULES3.1-ECOSSE-FUN)

• ECOSSE + FUN

• ECOSSE only
 Calculates plant N demand to match NPP.
 No C cost of N uptake.

• FUN only
 Uses a fixed map(ancillary) of soil N.
Based on tests with JULES2.0-ECOSSE at a single site with ECOSSE called every JULES timestep:

<table>
<thead>
<tr>
<th>Number of ECOSSE layers</th>
<th>Relative CPU (wall clock) time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>1.44</td>
</tr>
<tr>
<td>10</td>
<td>1.67</td>
</tr>
<tr>
<td>20</td>
<td>2.00</td>
</tr>
<tr>
<td>60</td>
<td>2.89</td>
</tr>
</tbody>
</table>

Notes
These were tests of run time; the results were clearly different.
Simple tests, with moderate optimisation by compiler.
Coupling less often (e.g. once every 1-2 hours) would be important in reducing CPU requirements.
Multi-year times series of soil CO$_2$ fluxes. Orange=observations, Red=JULES.
Ongoing and upcoming activities (and aspirations)

Coding

• Fertilisers (currently hardwired to zero).
• N15 – on a switch or remove?
• In the distant future - relax the restriction to one soil column per gridbox (e.g. fertilised and non-fertilised areas, wetland and non-wetland).

Spin up methods

Testing

• Against short-term gas fluxes (e.g. NitroEurope)
• Against long term SOM accumulations

The code is available on PUMA.
Schematic of the main connections between components of JULES-ECOSSE-FUN

- Dynamic vegetation model (TRIFFID)
- JULES: Surface energy balance, soil T and moisture, photosynthesis
- Soil C and N model (ECOSSE)
- Plant N uptake model (FUN)
- NPP available for growth
- NPP/ N demand soil T and moisture
- vegetation amounts and properties (e.g. height, LAI)
- organic content
- soil T and moisture
- N availability
- N extraction
- litter inputs
- gas fluxes
- leaching